Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Cause of LED Efficiency Droop Finally Revealed: Researchers at UC Santa Barbara and École Polytechnique confirm that Auger recombination theory is responsible for LED droop phenomenon

LED emitting light under forward bias in an ultra high vacuum chamber allowing simultaneous electron emission energy. Credit: Ecole Polytechnique, Ph. Lavialle
LED emitting light under forward bias in an ultra high vacuum chamber allowing simultaneous electron emission energy.

Credit: Ecole Polytechnique, Ph. Lavialle

Abstract:
Researchers at University of California, Santa Barbara, in collaboration with colleagues at the École Polytechnique in France, have conclusively identified Auger recombination as the mechanism that causes light emitting diodes (LEDs) to be less efficient at high drive currents.

Cause of LED Efficiency Droop Finally Revealed: Researchers at UC Santa Barbara and École Polytechnique confirm that Auger recombination theory is responsible for LED droop phenomenon

Santa Barbara, CA | Posted on April 23rd, 2013

Until now, scientists had only theorized the cause behind the phenomenon known as LED "droop"—a mysterious drop in the light produced when a higher current is applied. The cost per lumen of LEDs has held the technology back as a viable replacement for incandescent bulbs for all-purpose commercial and residential lighting.

This could all change now that the cause of LED efficiency droop has been explained, according to researchers James Speck and Claude Weisbuch of the Center for Energy Efficient Materials at UCSB, an Energy Frontier Research Center sponsored by the U.S. Department of Energy.

Knowledge gained from this study is expected to result in new ways to design LEDs that will have significantly higher light emission efficiencies. LEDs have enormous potential for providing long-lived high quality efficient sources of lighting for residential and commercial applications. The U.S. Department of Energy recently estimated that the widespread replacement of incandescent and fluorescent lights by LEDs in the U.S. could save electricity equal to the total output of fifty 1GW power plants.

"Rising to this potential has been contingent upon solving the puzzle of LED efficiency droop," commented Speck, professor of Materials and the Seoul Optodevice Chair in Solid State Lighting at UCSB. "These findings will enable us to design LEDs that minimize the non-radiative recombination and produce higher light output."

"This was a very complex experiment—one that illustrates the benefits of teamwork through both an international collaboration and a DOE Energy Frontier Research Center," commented Weisbuch, distinguished professor of Materials at UCSB. Weisbuch, who is also a faculty member at the École Polytechnique in Paris, enlisted the support of his colleagues Lucio Martinelli and Jacques Peretti. UCSB graduate student Justin Iveland was a key member of the team working both at UCSB and École Polytechnique.

In 2011, UCSB professor Chris van de Walle and colleagues theorized that a complex non-radiative process known as Auger recombination was behind nitride semiconductor LED droop, whereby injected electrons lose energy to heat by collisions with other electrons rather than emitting light.

A definitive measurement of Auger recombination in LEDs has now been accomplished by Speck, Weisbuch, and their research team.

The experiment used an LED with a specially prepared surface that permitted the researchers to directly measure the energy spectrum of electrons emitted from the LED. The results unambiguously showed a signature of energetic electrons produced by the Auger process.

The results of their work are to be published in the journal Physical Review Letters. A similar version of the accepted manuscript can be found at http://arxiv.org/abs/1304.5469.

This work was funded by the UCSB Center for Energy Efficient Materials, an Energy Frontier Research Center of the US Department of Energy, Office of Science. Additional support for the work at École Polytechnique was provided by the French government.

####

About University of California - Santa Barbara
The Center for Energy Efficient Materials at UCSB is a research program within the Institute for Energy Efficiency, a cross-campus institute dedicated to science and engineering research for a more efficient sustainable energy future.

The College of Engineering at University of California, Santa Barbara is recognized globally as a leader among the top tier of engineering education and research programs, and is renowned for a successful interdisciplinary approach to engineering research.

For more information, please click here

Contacts:
Melissa Van De Werfhorst

(805) 893-4301

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Discoveries

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Research partnerships

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE