Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Super-nanotubes: 'Remarkable' spray-on coating combines carbon nanotubes with ceramic

This is a micrograph of one strand of a new spray-on super-nanotube composite developed by the National Institute of Standards and Technology (NIST) and Kansas State University. The multi-wall nanotube core is surrounded by a ceramic shell. The composite is a promising coating for laser power detectors. (Color added for clarity.)

Credit: Kansas State University
This is a micrograph of one strand of a new spray-on super-nanotube composite developed by the National Institute of Standards and Technology (NIST) and Kansas State University. The multi-wall nanotube core is surrounded by a ceramic shell. The composite is a promising coating for laser power detectors. (Color added for clarity.)

Credit: Kansas State University

Abstract:
Researchers from the National Institute of Standards and Technology (NIST) and Kansas State University have demonstrated a spray-on mixture of carbon nanotubes and ceramic that has unprecedented ability to resist damage while absorbing laser light.*

Super-nanotubes: 'Remarkable' spray-on coating combines carbon nanotubes with ceramic

Boulder, CO | Posted on April 17th, 2013

Coatings that absorb as much of the energy of high-powered lasers as possible without breaking down are essential for optical power detectors that measure the output of such lasers, which are used, for example, in military equipment for defusing unexploded mines. The new material improves on NIST's earlier version of a spray-on nanotube coating for optical power detectors** and has already attracted industry interest.

"It really is remarkable material," NIST co-author John Lehman says. "It's a way to make super-nanotubes. It has the optical, thermal and electrical properties of nanotubes with the robustness of the high-temperature ceramic."

The composite was developed by Kansas State. NIST researchers suggested using toluene to uniformly coat individual nanotubes with a ceramic shell. They also performed damage studies showing how well the composite tolerates exposure to laser light.

NIST has developed and maintained optical power standards for decades. In recent years, NIST researchers have coated optical detectors with nanotubes because of their unusual combination of desirable properties, including intense black color for maximum light absorption.

The new composite consists of multiwall carbon nanotubes and a ceramic made of silicon, boron, carbon and nitrogen. Boron boosts the temperature at which the material breaks down. The nanotubes were dispersed in toluene, to which a clear liquid polymer containing boron was added drop by drop, and the mixture was heated to 1,100 degrees C. The resulting composite was then crushed into a fine powder, dispersed in toluene, and sprayed in a thin coat on copper surfaces. Researchers baked the test specimens and then exposed them to a far-infrared laser beam of the type used to cut hard materials.

Analysis revealed that the coating absorbed 97.5 percent of the light and tolerated 15 kilowatts of laser power per square centimeter for 10 seconds. This is about 50 percent higher damage tolerance than other research groups have reported for similar coatings—such as nanotubes alone and carbon paint—tested with the same wavelength of light, according to the paper. The nanotubes and graphene-like carbon absorb light uniformly and transmit heat well, while the oxidation-resistant ceramic boosts damage resistance. The spray-on material also adheres well to the copper surface. As an added bonus, the composite can be produced easily in large quantities.

After light exposure, the coatings were analyzed using several different techniques. Electron microscopy revealed no major destruction such as burning or deformation. Other tests showed the coating to be adaptable, with the ceramic shell partially oxidizing into a stable layer of silicon dioxide (quartz).

* R. Bhandavat, A. Feldman, C. Cromer, J. Lehman and G. Singh. 2013. Very high laser-damage threshold of polymer-derived Si(B)CNCarbon nanotube composite coatings. ACS Applied Materials & Interfaces. ASAP Publication Date March 19. DOI: 10.1021/am302755x.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Laura Ost

303-497-4880

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

** See, for example, the 2009 NIST Tech Beat article, "New Nanotube Coating Enables Novel Laser Power Meter," at:

Related News Press

Laboratories

Nanoscale view of energy storage January 16th, 2017

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Nanotubes/Buckyballs/Fullerenes

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

WPI researchers build liquid biopsy chip that detects metastatic cancer cells in blood December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Discoveries

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Military

Nanoscale view of energy storage January 16th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Industrial

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

Forge Nano raises $20 million in Series A Funding: Nano coating technology innovator Forge Nano will use funding to expand manufacturing capacity and grow Lithium-Ion battery opportunities November 3rd, 2016

Photonics/Optics/Lasers

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Researcher's discovery of new crystal structure holds promise for optoelectronic devices January 6th, 2017

The researchers created a tiny laser using nanoparticles January 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project