Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Chloroform cleanup: just the beginning for palladium-gold catalysts: Federally funded research pays off with new process for environmental remediation

When chloroform-contaminated water is flowed through a column containing PGClear pellets, the palladium and gold in the pellets spurs a chemical reaction that breaks down chloroform into nontoxic methane and chloride salt.
CREDIT: Jeff Fitlow/Rice University
When chloroform-contaminated water is flowed through a column containing PGClear pellets, the palladium and gold in the pellets spurs a chemical reaction that breaks down chloroform into nontoxic methane and chloride salt.

CREDIT: Jeff Fitlow/Rice University

Abstract:
Researchers from Rice University, DuPont Central Research and Development and Stanford University have announced a full-scale field test of an innovative process that gently but quickly destroys some of the world's most pervasive and problematic pollutants. The technology, called PGClear, originated from basic scientific research at Rice during a 10-year, federally funded initiative to use nanotechnology to clean the environment.

Chloroform cleanup: just the beginning for palladium-gold catalysts: Federally funded research pays off with new process for environmental remediation

Houston, TX | Posted on April 15th, 2013

PGClear uses a combination of palladium and gold metal to break down hazardous compounds like vinyl chloride, trichloroethene (TCE) and chloroform into nontoxic byproducts.

"Chlorinated compounds were widely used as solvents for many decades, and they are common groundwater contaminants the world over," said Rice's Michael Wong, professor of chemical and biomolecular engineering and the lead researcher on the PGClear project. "These compounds are also extremely difficult to treat inexpensively with conventional technology. My lab began its work to solve this problem more than a decade ago."

DuPont researcher John Wilkens said, "The problem-solving for this technology began at the nanoscale. Mike and his team were working with nanoscale catalysts when they developed the technology that would ultimately become PGClear. The scale of the technology was subsequently enlarged to permit use in conventional reaction systems for field implementation."

The first large-scale PGClear unit, which is designed to treat groundwater contaminated with chloroform, is scheduled for installation at a DuPont site in Louisville, Ky., in June. The 6-by-8-foot unit contains valves and pipes that will carry groundwater to a series of tubes that each contain thousands of pellets of palladium-gold (PG) catalyst. The pellets, which are about the size of a grain of rice, spur a chemical reaction that breaks down chloroform into nontoxic methane and chloride salt.

"The palladium-gold catalyst has so far performed well for remediating groundwater samples collected at DuPont," said Brad Nave, director of the DuPont Remediation Project. "While the project is not yet full-scale, our next step will subject the technology to the rigors of real-world field conditions. Rice, Stanford and DuPont have been working on the details of the field pilot for several years, and we're looking forward to a successful test."

Wong began working on the catalytic remediation technology shortly after arriving at Rice in 2001, the same year Rice won a grant from the National Science Foundation for the Center for Biological and Environmental Nanotechnology (CBEN). CBEN, a 10-year, $25 million effort, was the world's first academic research center dedicated to studying the interaction of nanomaterials with living organisms and ecosystems. CBEN was one of the first six U.S. academic research centers funded by the National Nanotechnology Initiative.

"Prior research had shown that palladium was an effective catalyst for breaking down TCE, but palladium is expensive, so it was thought to be impractical," Wong said. "At CBEN, we used nanotechnology to design particles in which every atom of palladium was used to catalyze the reaction. We also found that adding a tiny bit of gold enhanced the reaction."

DuPont contacted Wong about the award-winning research in 2007 and proposed developing a scalable process to use the palladium-gold catalysts to treat other chlorinated pollutants like chloroform and vinyl chloride. With additional support from the World Gold Council in London, researchers from Rice and DuPont worked to refine the catalyst and the process. They also worked with the South African mineral research organization MINTEK, which produced the catalytic pellets for the first PGClear unit. Gold and palladium make up only about 1 percent of material in each of the purple-black pellets.

"This program is important because of its unique three-stage collaboration: Rice's laboratory work, Stanford's pilot-scale reactor technology and DuPont's expertise in industrial operations and field-pilot testing. Without these three aspects coming together, the technology might never have left the laboratory," Wong said.

Stanford's Martin Reinhard, professor of civil and environmental engineering, said, "It is gratifying to take the outstanding lab results one step closer to practical use. Once operational, PGClear will be the first technology of its kind to use gold and palladium."

Chlorinated compounds like TCE, vinyl chloride and chloroform are found at more than 60 percent of the contaminated waste sites on the Superfund National Priorities List. Wong said that by analyzing the monthslong performance of the PGClear unit in Kentucky, the research team aims to make the technology available at Superfund sites and elsewhere.

"This project is a perfect example of how federal research funding pays off when academic researchers partner with industry to tackle difficult problems," said Rice's Vicki Colvin, vice provost for research and former director of CBEN.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Videos/Movies

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Fast-spinning spheres show nanoscale systems' secrets: Rice University lab demonstrates energetic properties of colloids in spinning magnetic field February 7th, 2018

New research yields super-strong aluminum alloy January 25th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Environment

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Research partnerships

Basque researchers turn light upside down February 23rd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project