Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chloroform cleanup: just the beginning for palladium-gold catalysts: Federally funded research pays off with new process for environmental remediation

When chloroform-contaminated water is flowed through a column containing PGClear pellets, the palladium and gold in the pellets spurs a chemical reaction that breaks down chloroform into nontoxic methane and chloride salt.
CREDIT: Jeff Fitlow/Rice University
When chloroform-contaminated water is flowed through a column containing PGClear pellets, the palladium and gold in the pellets spurs a chemical reaction that breaks down chloroform into nontoxic methane and chloride salt.

CREDIT: Jeff Fitlow/Rice University

Abstract:
Researchers from Rice University, DuPont Central Research and Development and Stanford University have announced a full-scale field test of an innovative process that gently but quickly destroys some of the world's most pervasive and problematic pollutants. The technology, called PGClear, originated from basic scientific research at Rice during a 10-year, federally funded initiative to use nanotechnology to clean the environment.

Chloroform cleanup: just the beginning for palladium-gold catalysts: Federally funded research pays off with new process for environmental remediation

Houston, TX | Posted on April 15th, 2013

PGClear uses a combination of palladium and gold metal to break down hazardous compounds like vinyl chloride, trichloroethene (TCE) and chloroform into nontoxic byproducts.

"Chlorinated compounds were widely used as solvents for many decades, and they are common groundwater contaminants the world over," said Rice's Michael Wong, professor of chemical and biomolecular engineering and the lead researcher on the PGClear project. "These compounds are also extremely difficult to treat inexpensively with conventional technology. My lab began its work to solve this problem more than a decade ago."

DuPont researcher John Wilkens said, "The problem-solving for this technology began at the nanoscale. Mike and his team were working with nanoscale catalysts when they developed the technology that would ultimately become PGClear. The scale of the technology was subsequently enlarged to permit use in conventional reaction systems for field implementation."

The first large-scale PGClear unit, which is designed to treat groundwater contaminated with chloroform, is scheduled for installation at a DuPont site in Louisville, Ky., in June. The 6-by-8-foot unit contains valves and pipes that will carry groundwater to a series of tubes that each contain thousands of pellets of palladium-gold (PG) catalyst. The pellets, which are about the size of a grain of rice, spur a chemical reaction that breaks down chloroform into nontoxic methane and chloride salt.

"The palladium-gold catalyst has so far performed well for remediating groundwater samples collected at DuPont," said Brad Nave, director of the DuPont Remediation Project. "While the project is not yet full-scale, our next step will subject the technology to the rigors of real-world field conditions. Rice, Stanford and DuPont have been working on the details of the field pilot for several years, and we're looking forward to a successful test."

Wong began working on the catalytic remediation technology shortly after arriving at Rice in 2001, the same year Rice won a grant from the National Science Foundation for the Center for Biological and Environmental Nanotechnology (CBEN). CBEN, a 10-year, $25 million effort, was the world's first academic research center dedicated to studying the interaction of nanomaterials with living organisms and ecosystems. CBEN was one of the first six U.S. academic research centers funded by the National Nanotechnology Initiative.

"Prior research had shown that palladium was an effective catalyst for breaking down TCE, but palladium is expensive, so it was thought to be impractical," Wong said. "At CBEN, we used nanotechnology to design particles in which every atom of palladium was used to catalyze the reaction. We also found that adding a tiny bit of gold enhanced the reaction."

DuPont contacted Wong about the award-winning research in 2007 and proposed developing a scalable process to use the palladium-gold catalysts to treat other chlorinated pollutants like chloroform and vinyl chloride. With additional support from the World Gold Council in London, researchers from Rice and DuPont worked to refine the catalyst and the process. They also worked with the South African mineral research organization MINTEK, which produced the catalytic pellets for the first PGClear unit. Gold and palladium make up only about 1 percent of material in each of the purple-black pellets.

"This program is important because of its unique three-stage collaboration: Rice's laboratory work, Stanford's pilot-scale reactor technology and DuPont's expertise in industrial operations and field-pilot testing. Without these three aspects coming together, the technology might never have left the laboratory," Wong said.

Stanford's Martin Reinhard, professor of civil and environmental engineering, said, "It is gratifying to take the outstanding lab results one step closer to practical use. Once operational, PGClear will be the first technology of its kind to use gold and palladium."

Chlorinated compounds like TCE, vinyl chloride and chloroform are found at more than 60 percent of the contaminated waste sites on the Superfund National Priorities List. Wong said that by analyzing the monthslong performance of the PGClear unit in Kentucky, the research team aims to make the technology available at Superfund sites and elsewhere.

"This project is a perfect example of how federal research funding pays off when academic researchers partner with industry to tackle difficult problems," said Rice's Vicki Colvin, vice provost for research and former director of CBEN.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project