Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanosponges soak up toxins released by bacterial infections and venom

Engineers at the University of California, San Diego have invented a "nanosponge" capable of safely removing a broad class of dangerous toxins from the bloodstream, including toxins produced by MRSA, E. Coli, poisonous snakes and bees. The nanosponges are made of a biocompatible polymer core wrapped in a natural red blood cell membrane.

Credit: Zhang Research Lab
Engineers at the University of California, San Diego have invented a "nanosponge" capable of safely removing a broad class of dangerous toxins from the bloodstream, including toxins produced by MRSA, E. Coli, poisonous snakes and bees. The nanosponges are made of a biocompatible polymer core wrapped in a natural red blood cell membrane.

Credit: Zhang Research Lab

Abstract:
Engineers at the University of California, San Diego have invented a "nanosponge" capable of safely removing a broad class of dangerous toxins from the bloodstream - including toxins produced by MRSA, E. coli, poisonous snakes and bees. These nanosponges, which thus far have been studied in mice, can neutralize "pore-forming toxins," which destroy cells by poking holes in their cell membranes. Unlike other anti-toxin platforms that need to be custom synthesized for individual toxin type, the nanosponges can absorb different pore-forming toxins regardless of their molecular structures. In a study against alpha-haemolysin toxin from MRSA, pre-innoculation with nanosponges enabled 89 percent of mice to survive lethal doses.



Engineers at the University of California, San Diego have invented a "nanosponge" capable of safely removing a broad class of dangerous toxins from the bloodstream -- including toxins produced by MRSA, E. coli, poisonous snakes and bees. These nanosponges, which thus far have been studied in mice, can neutralize "pore-forming toxins," which destroy cells by poking holes in their cell membranes. Unlike other anti-toxin platforms that need to be custom synthesized for individual toxin type, the nanosponges can absorb different pore-forming toxins regardless of their molecular structures. In a study against alpha-haemolysin toxin from MRSA, pre-innoculation with nanosponges enabled 89 percent of mice to survive lethal doses. Administering nanosponges after the lethal dose led to 44 percent survival.

Credit: UC San Diego Jacobs School of Engineering

Nanosponges soak up toxins released by bacterial infections and venom

San Diego, CA | Posted on April 15th, 2013

Administering nanosponges after the lethal dose led to 44 percent survival.

The team, led by nanoengineers at the UC San Diego Jacobs School of Engineering, published the findings in Nature Nanotechnology April 14.

"This is a new way to remove toxins from the bloodstream," said Liangfang Zhang, a nanoengineering professor at the UC San Diego Jacobs School of Engineering and the senior author on the study. "Instead of creating specific treatments for individual toxins, we are developing a platform that can neutralize toxins caused by a wide range of pathogens, including MRSA and other antibiotic resistant bacteria," said Zhang. The work could also lead to non-species-specific therapies for venomous snake bites and bee stings, which would make it more likely that health care providers or at-risk individuals will have life-saving treatments available when they need them most.

The researchers are aiming to translate this work into approved therapies. "One of the first applications we are aiming for would be an anti-virulence treatment for MRSA. That's why we studied one of the most virulent toxins from MRSA in our experiments," said "Jack" Che-Ming Hu, the first author on the paper. Hu, now a post-doctoral researcher in Zhang's lab, earned his Ph.D. in bioengineering from UC San Diego in 2011.

Aspects of this work will be presented April 18 at Research Expo, the annual graduate student research and networking event of the UC San Diego Jacobs School of Engineering.

Nanosponges as Decoys

In order to evade the immune system and remain in circulation in the bloodstream, the nanosponges are wrapped in red blood cell membranes. This red blood cell cloaking technology was developed in Liangfang Zhang's lab at UC San Diego. The researchers previously demonstrated that nanoparticles disguised as red blood cells could be used to deliver cancer-fighting drugs directly to a tumor. Zhang also has a faculty appointment at the UC San Diego Moores Cancer Center.

Red blood cells are one of the primary targets of pore-forming toxins. When a group of toxins all puncture the same cell, forming a pore, uncontrolled ions rush in and the cell dies.

The nanosponges look like red blood cells, and therefore serve as red blood cell decoys that collect the toxins. The nanosponges absorb damaging toxins and divert them away from their cellular targets. The nanosponges had a half-life of 40 hours in the researchers' experiments in mice. Eventually the liver safely metabolized both the nanosponges and the sequestered toxins, with the liver incurring no discernible damage.

Each nanosponge has a diameter of approximately 85 nanometers and is made of a biocompatible polymer core wrapped in segments of red blood cells membranes.

Zhang's team separates the red blood cells from a small sample of blood using a centrifuge and then puts the cells into a solution that causes them to swell and burst, releasing hemoglobin and leaving RBC skins behind. The skins are then mixed with the ball-shaped nanoparticles until they are coated with a red blood cell membrane.

Just one red blood cell membrane can make thousands of nanosponges, which are 3,000 times smaller than a red blood cell. With a single dose, this army of nanosponges floods the blood stream, outnumbering red blood cells and intercepting toxins.

Based on test-tube experiments, the number of toxins each nanosponge could absorb depended on the toxin. For example, approximately 85 alpha-haemolysin toxin produced by MRSA, 30 stretpolysin-O toxins and 850 melittin monomoers, which are part of bee venom.

In mice, administering nanosponges and alpha-haemolysin toxin simultaneously at a toxin-to-nanosponge ratio of 70:1 neutralized the toxins and caused no discernible damage.

One next step, the researchers say, is to pursue clinical trials.

The research was funded by the National Science Foundation (DMR-1216461) and the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK095168).

####

For more information, please click here

Contacts:
Catherine Hockmuth

858-822-1359

Copyright © University of California - San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Openings/New facilities/Groundbreaking/Expansion

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project