Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Doors Open at New Interdisciplinary Science Building for Energy Research at Brookhaven Lab: New world-class research facility will host research on breakthrough solutions to the nation's energy challenges

Abstract:
Doors opened today, April 11, 2013, at the Interdisciplinary Science Building (ISB), a new world-class research facility at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory where scientists will work to drive breakthrough solutions to the nation's energy challenges. Representatives from DOE, Brookhaven Lab, and Brookhaven Science Associates (BSA) joined elected officials and members of the Brookhaven Lab community at the ISB for a dedication ceremony to celebrate the facility's opening.

Doors Open at New Interdisciplinary Science Building for Energy Research at Brookhaven Lab: New world-class research facility will host research on breakthrough solutions to the nation's energy challenges

Upton, NY | Posted on April 11th, 2013

"Energy innovation plays a direct role in the continued prosperity and security of the United States, and the ISB is at the forefront of the Department of Energy's investment in a vibrant future," said DOE Office of Science Director Bill Brinkman. "The research done here will have long-lasting and far-reaching impacts."

"I don't think there's a more important problem in the world right now, both near- and long-term, than energy," said New York State Senator Kenneth P. LaValle. "There is no simple solution, however I am positive about this: The men and women working in this new interdisciplinary space will help create the technologies that will power us into the future."

This new hub for energy research at Brookhaven Lab will provide customized laboratories for multidisciplinary research teams at the ISB working to tackle America's most pressing energy and environmental challenges. Specifically, scientists at the ISB will engineer and optimize materials with the goal of developing breakthrough technologies for batteries, biofuels, and solar panels.

"Scientists at the ISB will be well positioned to help answer our nation's call for energy security," said Ron Townsend, Board Chair for BSA-the company that manages Brookhaven Lab for DOE-and Executive Vice President, Global Laboratory Operations, for Battelle.

Brookhaven Laboratory Director Doon Gibbs said, "This is an exciting day for Brookhaven Lab and the nation. The ISB-with its cutting-edge, 21st century laboratories-is a gateway to exciting possibilities and opportunities in basic energy science and technology, including applications. It's where scientists from different backgrounds and disciplines will work together to answer tough questions and address our critical energy challenges to make the world a better place."

Overview of the Facility

The ISB is an 87,700-square-foot facility, where researchers with different scientific specialties will team up to take on significant energy challenges. The building contains offices, 60 standard laboratories, and four specialty labs with unique features, including a humidity-controlled dry room, where researchers can safely assemble and test new lithium-ion batteries; two ultra-low vibration laboratories housing the new Spectroscopic Imaging Scanning Tunneling Microscope (SI-STM) used to explore materials' electronic structure at the atomic scale; and the OASIS laboratory, which connects a lab customized for molecular beam epitaxy (MBE)-a process researchers use to fabricate new materials one atomic layer at a time-with one of the ultra-low vibration labs via a vacuum-locked system. This system allows scientists to transport MBE-created samples directly to the SI-STM microscope without exposing them to air, which can diminish sought-after properties.

The building also contains conference spaces and areas designed to foster collaboration among scientists. The ISB is located within walking distance of several other major Lab research facilities that will help advance work and foster collaboration, including the Center for Functional Nanomaterials, the National Synchrotron Light Source (NSLS), and NSLS-II, which is scheduled to begin operations in 2014.

"The ISB provides state-of-the-art laboratory space for materials science research, including world-leading, high-precision experimental environments," said Associate Laboratory Director for Basic Energy Sciences Jim Misewich. "The ISB will enable research to understand complex materials at a level that is unprecedented and will advance solutions for 21st century energy technologies."

"The Laboratory has made a commitment to grow its impact and the ISB is a critical facility in which some of our best researchers are solving some of the most challenging problems," said Associate Laboratory Director for the Global and Regional Solutions Gerry Stokes.

Sustainable Design and Construction

Sustainable design and energy efficiency were significant factors that influenced construction of the ISB. The ISB design reduces use of potable water by 55 percent and energy consumption by 37 percent, which contributes toward an overall cost avoidance of 29 percent when compared to benchmark laboratory designs.

In addition to energy-cost-saving strategies such as heat recovery, and high-efficiency lighting systems and laboratory equipment, the facility was built with certified environmentally-sustainable wood, recycled materials, and materials from vendors within the region to reduce the building's overall carbon footprint by minimizing the distance materials traveled to the site. The ISB design also includes strategies to conserve water at the facility.

"From the start, principles of sustainable design guided our concepts and basic architecture for the facility to create a laboratory building that is energy efficient and respectful of the environment," said ISB Project Manager Peggy Caradonna.

The total cost for the project was $66.8 million, most of which was provided by the DOE Office of Science. The Lab also received approximately $18 million from the American Recovery and Reinvestment Act to accelerate construction in April 2009.

"The ISB will not only provide scientific advances that help preserve the environment, but the facility itself stands as a testament to thoughtful and sustainable development," said Marcus Jones, Associate Director for the Office of Safety, Security, and Infrastructure in the DOE Office of Science. "The entire project, from planning to construction, was handled expertly by all involved."

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of the State University of New York, for and on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle Memorial Institute, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more (www.bnl.gov/newsroom), follow Brookhaven Lab on Twitter (twitter.com/BrookhavenLab), or find us on Facebook (www.facebook.com/BrookhavenLab).

For more information, please click here

Contacts:
Justin Eure
631 344-2347

or
Peter Genzer
631 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Openings/New facilities/Groundbreaking/Expansion

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Laboratories

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Govt.-Legislation/Regulation/Funding/Policy

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Announcements

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Environment

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Herbal Extracts Applied to Synthesize Titanium Dioxide Nanoparticles January 28th, 2016

FLEXcon shares insights on developments and safety guidelines in nanotechnology: FLEXcon hosted New England Nanotechnology Association event, discussing latest industry activities and innovations January 25th, 2016

Highly efficient heavy metal ions filter January 25th, 2016

Energy

Canadian physicists discover new properties of superconductivity February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

February 4th, 2016

Putting silicon 'sawdust' in a graphene cage boosts battery performance: Approach could remove major obstacles to increasing the capacity of lithium-ion batteries January 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic