Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sol Voltaics Unveils SolInk™ to Boost Performance of Solar Modules by 25 Percent: Manufacturing in the Air: Aerotaxy™ Process Reduces the Cost and Complexity of Producing Nanowires for Solar Modules, LED Bulbs and Other Products

Abstract:
Sol Voltaics today unveiled SolInk™, an economical nanomaterial that promises to increase the efficiency of crystalline silicon or thin film solar modules by up to 25 percent or more, leading to solar power plants and rooftop solar arrays that will generate far more electricity than today's best commercially available systems.

Sol Voltaics Unveils SolInk™ to Boost Performance of Solar Modules by 25 Percent: Manufacturing in the Air: Aerotaxy™ Process Reduces the Cost and Complexity of Producing Nanowires for Solar Modules, LED Bulbs and Other Products

Lund, Sweden | Posted on April 9th, 2013

he increase in efficiency will allow SolInk-enhanced panels to deliver power at prices that competes directly against electricity from fossil fuel plants while improving the economics for manufacturers. Global demand for solar energy is expected to grow from 29.8 gigawatts of new solar installations in 2012 to 50.8 gigawatts in 2016, according to Greentech Media.

"The best way to lower the cost of solar power is to raise the efficiency of solar modules," explained David Epstein, CEO of Sol Voltaics. "Approximately two-thirds of the cost of commercial solar systems revolves around land, labor costs and other factors that solar developers can't directly control. By raising the efficiency of solar modules, we give solar manufacturers the opportunity to sell more valuable, higher-margin products and solar developers the opportunity to generate more power -- at a lower price -- with essentially the same physical assets."

To date, Sol Voltaics has raised $11 million from private investors including Industrifonden, Foundation Asset Management of Sweden, Teknoinvest, Provider, Nano Future Invest and Scatec Energy of Norway. The company additionally has received public funding from the European Union, Vinnova, Nordic Innovation Center, and others. Sol Voltaics will raise $10 to $20 million this year.

Sol Voltaics' strategy revolves around two fundamental technologies: gallium arsenide nanowires, thin strands of material that constitute the active ingredient in SolInk, and Aerotaxy™, an innovative process for producing nanowires created by company founder and Lund University professor Lars Samuelson.

Gallium arsenide has been used in solar for years because of its reliability and high conversion efficiencies: orbiting satellites employ solar cells made from the material to power their internal systems. Gallium arsenide solar cells, however, typically cost far more to produce than crystalline silicon or thin film cells, thereby confining the material to niche market segments.

SolInk dramatically reduces the cost by minimizing materials: less than a gram of nanowires is added to crystalline silicon panels. With SolInk, module manufacturers can make commercially feasible, high efficiency gallium arsenide solar modules or multi-junction solar modules combining gallium arsenide and crystalline silicon.

SolInk also enables light concentration without the use of optics or mechanical components. Nanowires need only cover a small portion of the surface area of a crystalline silicon or thin film solar cell to achieve substantially all of the benefits of adding gallium arsenide. In a research paper published in Science earlier this year, Lund University and Sol Voltaics researchers demonstrated that indium phosphide nanowires covering just 12 percent of the substrate surface produced a solar cell with an efficiency of 13.8 percent. The results were certified by the Fraunhofer Institute. The phenomenon, called Wave Concentrated Photovoltaics (WCPV), combined with the other advantages of gallium arsenide nanowires leads to ground-breaking performance for SolInk.

Aerotaxy: A New Way to Manufacture Materials

Aerotaxy represents a new paradigm for mass producing the smallest structures inside electronic devices. Nanowires and nanotubes are typically produced through an epitaxial process, i.e. slowly grown as crystals on substrates. Because of the inherent physical limits of the epitaxial process, nanoparticles often need to be grown in place or harvested and sorted in batch processes that can be both time-consuming and expensive.

Aerotaxy creates nanomaterials by suspending and mixing active materials in carrier gas streams. The active materials bond to form larger, uniform structures while in flight: nanowires are literally grown in air. In this way, Aerotaxy can generate tens of billions of nanowires per second on a continuous basis.

The finished nanowires can be integrated into a solar panel or other products, or can be stored indefinitely. A 2012 paper published in Nature details how professor Samuelson and his team manufactured gallium arsenide nanowires with Aerotaxy.

"The results have been far better than we ever expected," said Samuelson. "We understand how different materials react or bond to one another. With Aerotaxy, we essentially create an atmosphere where we can better harness those physical and chemical properties."

Business Model: SolInk, Not Modules

Rather than produce modules or sell capital equipment, Sol Voltaics will produce and sell SolInk to solar cell and module manufacturers: a single, relatively small, manufacturing facility will be able to provide megawatts worth of materials to module makers worldwide. Module manufacturers likewise will be able to integrate new materials into their products without replacing existing production lines.

Sol Voltaics anticipates producing functional solar cells with gallium arsenide nanowires for demonstration by the end of 2013. Commercial production of SolInk-enhanced modules will begin in 2015 and move into volume production in 2016. Total invested capital to get into high-volume commercial production will come to less than $50 million.

Other potential applications for Aerotaxy include producing nanomaterials for power electronics, LEDs, batteries and energy storage.

"The promise of nanotechnology has been held back by complexity, low yields and cost. Aerotaxy paves the way for integrating new materials into products in a streamlined manner. This is nanotechnology made simple," said Alf Bjorseth, Chairman of Scatec.

####

About Sol Voltaics
Based in Lund, Sweden, Sol Voltaics develops novel nanomaterials and production processes for enhancing solar panels and other products.

For more information, please click here

Contacts:
Michael Kanellos
Vice President
Eastwick Communications
(415) 820-4176

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Display technology/LEDs/SS Lighting/OLEDs

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Missing atoms in a forgotten crystal bring luminescence October 10th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project