Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Sol Voltaics Unveils SolInk™ to Boost Performance of Solar Modules by 25 Percent: Manufacturing in the Air: Aerotaxy™ Process Reduces the Cost and Complexity of Producing Nanowires for Solar Modules, LED Bulbs and Other Products

Abstract:
Sol Voltaics today unveiled SolInk™, an economical nanomaterial that promises to increase the efficiency of crystalline silicon or thin film solar modules by up to 25 percent or more, leading to solar power plants and rooftop solar arrays that will generate far more electricity than today's best commercially available systems.

Sol Voltaics Unveils SolInk™ to Boost Performance of Solar Modules by 25 Percent: Manufacturing in the Air: Aerotaxy™ Process Reduces the Cost and Complexity of Producing Nanowires for Solar Modules, LED Bulbs and Other Products

Lund, Sweden | Posted on April 9th, 2013

he increase in efficiency will allow SolInk-enhanced panels to deliver power at prices that competes directly against electricity from fossil fuel plants while improving the economics for manufacturers. Global demand for solar energy is expected to grow from 29.8 gigawatts of new solar installations in 2012 to 50.8 gigawatts in 2016, according to Greentech Media.

"The best way to lower the cost of solar power is to raise the efficiency of solar modules," explained David Epstein, CEO of Sol Voltaics. "Approximately two-thirds of the cost of commercial solar systems revolves around land, labor costs and other factors that solar developers can't directly control. By raising the efficiency of solar modules, we give solar manufacturers the opportunity to sell more valuable, higher-margin products and solar developers the opportunity to generate more power -- at a lower price -- with essentially the same physical assets."

To date, Sol Voltaics has raised $11 million from private investors including Industrifonden, Foundation Asset Management of Sweden, Teknoinvest, Provider, Nano Future Invest and Scatec Energy of Norway. The company additionally has received public funding from the European Union, Vinnova, Nordic Innovation Center, and others. Sol Voltaics will raise $10 to $20 million this year.

Sol Voltaics' strategy revolves around two fundamental technologies: gallium arsenide nanowires, thin strands of material that constitute the active ingredient in SolInk, and Aerotaxy™, an innovative process for producing nanowires created by company founder and Lund University professor Lars Samuelson.

Gallium arsenide has been used in solar for years because of its reliability and high conversion efficiencies: orbiting satellites employ solar cells made from the material to power their internal systems. Gallium arsenide solar cells, however, typically cost far more to produce than crystalline silicon or thin film cells, thereby confining the material to niche market segments.

SolInk dramatically reduces the cost by minimizing materials: less than a gram of nanowires is added to crystalline silicon panels. With SolInk, module manufacturers can make commercially feasible, high efficiency gallium arsenide solar modules or multi-junction solar modules combining gallium arsenide and crystalline silicon.

SolInk also enables light concentration without the use of optics or mechanical components. Nanowires need only cover a small portion of the surface area of a crystalline silicon or thin film solar cell to achieve substantially all of the benefits of adding gallium arsenide. In a research paper published in Science earlier this year, Lund University and Sol Voltaics researchers demonstrated that indium phosphide nanowires covering just 12 percent of the substrate surface produced a solar cell with an efficiency of 13.8 percent. The results were certified by the Fraunhofer Institute. The phenomenon, called Wave Concentrated Photovoltaics (WCPV), combined with the other advantages of gallium arsenide nanowires leads to ground-breaking performance for SolInk.

Aerotaxy: A New Way to Manufacture Materials

Aerotaxy represents a new paradigm for mass producing the smallest structures inside electronic devices. Nanowires and nanotubes are typically produced through an epitaxial process, i.e. slowly grown as crystals on substrates. Because of the inherent physical limits of the epitaxial process, nanoparticles often need to be grown in place or harvested and sorted in batch processes that can be both time-consuming and expensive.

Aerotaxy creates nanomaterials by suspending and mixing active materials in carrier gas streams. The active materials bond to form larger, uniform structures while in flight: nanowires are literally grown in air. In this way, Aerotaxy can generate tens of billions of nanowires per second on a continuous basis.

The finished nanowires can be integrated into a solar panel or other products, or can be stored indefinitely. A 2012 paper published in Nature details how professor Samuelson and his team manufactured gallium arsenide nanowires with Aerotaxy.

"The results have been far better than we ever expected," said Samuelson. "We understand how different materials react or bond to one another. With Aerotaxy, we essentially create an atmosphere where we can better harness those physical and chemical properties."

Business Model: SolInk, Not Modules

Rather than produce modules or sell capital equipment, Sol Voltaics will produce and sell SolInk to solar cell and module manufacturers: a single, relatively small, manufacturing facility will be able to provide megawatts worth of materials to module makers worldwide. Module manufacturers likewise will be able to integrate new materials into their products without replacing existing production lines.

Sol Voltaics anticipates producing functional solar cells with gallium arsenide nanowires for demonstration by the end of 2013. Commercial production of SolInk-enhanced modules will begin in 2015 and move into volume production in 2016. Total invested capital to get into high-volume commercial production will come to less than $50 million.

Other potential applications for Aerotaxy include producing nanomaterials for power electronics, LEDs, batteries and energy storage.

"The promise of nanotechnology has been held back by complexity, low yields and cost. Aerotaxy paves the way for integrating new materials into products in a streamlined manner. This is nanotechnology made simple," said Alf Bjorseth, Chairman of Scatec.

####

About Sol Voltaics
Based in Lund, Sweden, Sol Voltaics develops novel nanomaterials and production processes for enhancing solar panels and other products.

For more information, please click here

Contacts:
Michael Kanellos
Vice President
Eastwick Communications
(415) 820-4176

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

Display technology/LEDs/SS Lighting/OLEDs

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

Nature: Low-reflection wings make butterflies nearly invisible: Irregular nanostructures on the transparent wing of the glasswing butterfly prevent the reflection of light -- publication in Nature Communications -- researchers plan applications April 23rd, 2015

Whiteboards of the future: New electronic paper could make inexpensive electronic displays: A simple structure of bi-colored balls made of tough, inexpensive materials is well suited for large handwriting-enabled e-paper displays April 21st, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

Announcements

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Solar/Photovoltaic

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Better battery imaging paves way for renewable energy future April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project