Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New centre to focus on harvest and storage of solar energy

Abstract:

Sustainable Chemistry

Imagine a car coated with a surface that can simultaneously capture and store energy from the sun's rays. It would solve one of the main problems associated with solar cells - they don't work at night or in foul weather. Paint which combines the properties of both solar cells and batteries is the ultimate goal for chemist Morten Brønsted Nielsen, who has just been promoted as a so-called "fyrtårnsprofessor" (lighthouse professor) at the University of Copenhagen's Department of Chemistry.

New centre to focus on harvest and storage of solar energy

Copenhagen, Denmark | Posted on April 9th, 2013

Large grant from the University of Copenhagen to the Department of Chemistry

Included with Mogens Brøndsted Nielsen's new post, 35 million kroner has been granted from the University to establish a research centre together with Nielsen's colleagues Kurt V. Mikkelsen and Henrik G. Kjærgaard. They plan to build molecules that can arrange themselves into either solar cells or into a type of energy storing battery.

Particularly in Denmark, where there aren't that many hours of sunlight, it would be extremely relevant to have solar panels able to store energy for when it is needed. If we could also produce panels in the form of paint, it would be possible to mount the panels in places where today it is impossible," says the newly designated lighthouse professor.

Academic breadth increases chances for success

A combination of theory, synthesis and spectroscopy, as well as design, production and testing within the same centre increases the chances for realising the ambitious research project.

The position as lighthouse professor is designed to elevate the overall level of chemistry research at the University of Copenhagen. Until now, Brønsted Nielsen has been a professor at the Department of Chemistry. Department Head Mikael Bols explains his decision by pointing to Brønsted's exemplary work as leader of the ‘Molecular Engineering Group', a research group, which has been involved in the development of new molecules for advanced materials, including artificial photosynthesis and molecular electronics.

Mogens Brønsted Nielsen is incredibly dynamic. The group he has assembled is young and talented, and he is himself superb, both as a researcher and instructor," says Bols.

Centre for prediction, production and testing

The Centre wishes to combine three areas: theory, synthesis and spectroscopy. Molecules with the right properties will be designed using quantum mechanical calculations before their subsequent production using chemical synthesis and ultimately investigated using spectroscopy.

A flexible alternative to rigid solar panels

While solar cells provide energy without any deleterious environmental consequences, they do suffer from one consistent ill. Namely, today's solar technology is silicon based. Like glass, silicon is heavy, fragile and rigid. Therefore, most solar cells are now situated in far from flattering and uniform rows of panels upon the country's rooftops.

Our plan is to develop solar cells based on organic molecules that incorporate carbon as their primary ingredient. That might not sound especially flexible, but one needn't look beyond carbon fiber mats to imagine how it can be bent and twisted," explains Mogens Brøndsted Nielsen.

####

For more information, please click here

Contacts:
Communication
University of Copenhagen
Nørregade 10, PO box 2177
1017 Copenhagen K
Contact:
News editor

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

Chemistry

Nature inspires a greener way to make colorful plastics July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Fundamental Chemistry Findings Could Help Extend Moore’s Law: A Berkeley Lab-Intel collaboration outlines the chemistry of photoresist, enabling smaller features for future generations of microprocessors July 15th, 2014

Openings/New facilities/Groundbreaking/Expansion

Oxford Instruments Asylum Research Opens an Atomic Force Microscopy Demonstration Lab in Mumbai, India July 21st, 2014

Sono-Tek Corporation Announces New Clean Room Rated Laboratory Facility in China July 18th, 2014

Beneq is on the move! June 12th, 2014

Discoveries

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

Announcements

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Energy

From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Solar/Photovoltaic

From Narrow to Broad July 30th, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE