Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Trinity College Dublin uses Nanoparticle Tracking Analysis to develop solutions for diagnosis, drug delivery and treatment of cancer

Adriele Prina-Mello, Kieran Staunton and Ciaran Maguire (members of the Nanomedicine group, Trinity College Dublin) with NanoSight's NS500 system.
Adriele Prina-Mello, Kieran Staunton and Ciaran Maguire (members of the Nanomedicine group, Trinity College Dublin) with NanoSight's NS500 system.

Abstract:
NanoSight reports on how Nanoparticle Tracking Analysis, NTA, is being applied in the development of future diagnostic and theranostic solutions for early diagnosis, drug delivery and treatment of cancer at the School of Medicine and CRANN, Trinity College Dublin, Ireland.

Trinity College Dublin uses Nanoparticle Tracking Analysis to develop solutions for diagnosis, drug delivery and treatment of cancer

Salisbury, UK | Posted on April 9th, 2013

The School of Medicine (Institute of Molecular Medicine) and CRANN (the Centre for Research on Adaptive Nanostructures and Nanodevices) are based at Trinity College Dublin (TCD) where researchers work in developing new knowledge of nanoscale materials, with a particular focus on new device and sensor technologies, biotechnology and medical technology sectors, with a growing interest in multifunctional materials.

Dr Adriele Prina-Mello is a Research Fellow at CRANN and a part-time lecturer at the School of Medicine, Trinity College Dublin. His research focuses on functional biomaterials, diagnostic devices, and multifunctional nanomaterials for theranostic solutions in the treatment of cancer. Fundamental in this work is the understanding of particle size, size distribution and of hydrodynamic response of nanoparticles dependent on their degree of aggregation. Additionally, being able to measure zeta potential and track particle behavior in viscous or physiologically relevant media, informs the increasing characterization demands of the nanomedicine community. Here pressure is on tools providers to offer the most comprehensive and low volume testing of sometimes very "expensive" samples.

Dr Prina-Mello describes the Nanomedicine team goals: "Our main motivation for such levels of characterization is determined by the potential use, applicability, and safety aspect linked to nanosize materials. This allows for further modification of the particle surface coating/moieties in order to get closer to the suitable candidate for diagnostic, monitoring and therapeutic application for nanomedicine and or biomedical research and also clinical translation. Furthermore, we also need characterization information as basic preliminary understanding, in order to address wider experimental screening based on pharmaceutical standards, necessary to identify potential nanoparticle as lead carrier candidates for drug delivery of therapeutics".

Continuing, he notes the benefits of using NanoSight's NTA instrumentation in complement to other characterization techniques: "NanoSight allows for the identification of heterogeneity in particle size, poly-dispersity and counting with simultaneous zeta potential measurement. Furthermore, the use of small sample volumes compared to other techniques allows for cost effective, daily and routine characterization."

To find out about the company and to learn more about particle characterization using NanoSight's unique nanoparticle tracking analysis solutions, visit www.nanosight.com and register to receive the next issue of NanoTrail, the company's electronic newsletter.

####

About NanoSight
NanoSight delivers the world's most versatile and proven multi-parameter nanoparticle analysis in a single instrument.

NanoSight's "Nanoparticle Tracking Analysis" (NTA) detects and visualizes populations of nanoparticles in liquids down to 10 nm, dependent on material, and measures the size of each particle from direct observations of diffusion. Additionally, NanoSight measures concentration and a fluorescence mode differentiates suitably-labelled particles within complex background suspensions. Zeta potential measurements are similarly particle-specific. It is this particle-by-particle methodology that takes NTA beyond traditional light scattering and other ensemble techniques in providing high-resolution particle size distributions and validates data with information-rich video files of the particles moving under Brownian motion.

This simultaneous multiparameter characterization matches the demands of complex biological systems, hence its wide application in development of drug delivery systems, of viral vaccines, and in nanotoxicology. This real-time data gives insight into the kinetics of protein aggregation and other time-dependent phenomena in a qualitative and quantitative manner. NanoSight has a growing role in biodiagnostics, being proven in detection and speciation of nanovesicles (exosomes) and microvesicles.

NanoSight has installed more than 500 systems worldwide with users including BASF, GlaxoSmithKline, Merck, Novartis, Pfizer, Proctor and Gamble, Roche and Unilever together with the most eminent universities and research institutes. NanoSight's technology is validated by 600+ third party papers citing NanoSight results. NanoSight's leadership position in nanoparticle characterization is consolidated further with publication of an ASTM International standard, ASTM E2834, which describes the NTA methodology for detection and analysis of nanoparticles.

For more information, please click here

Contacts:
NanoSight Limited
Minton Park
London Road
Amesbury SP4 7RT UK
T +44(0)1980 676060
F +44(0)1980 624703
www.nanosight.com


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA UK
T +44(0)1799 521881
M +44(0)7843 012997
http://www.talking-science.com/

Copyright © NanoSight

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project