Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanotechnology imaging breakthrough

Highly coherent X-rays from synchrotron sources can be used for imaging nanomaterials in 3-D at tens of nanometer of spatial resolution. This image shows a monochromatic hard X-rays patterns from a single crystal gold particle, which produces a speckle-like fringe image. Inverting such "diffraction images" under certain conditions can result in a high-resolution distribution of the electron density (amplitude) and strain of the lattice structure (phase shift).

Credit: Image courtesy Wenge Yang
Highly coherent X-rays from synchrotron sources can be used for imaging nanomaterials in 3-D at tens of nanometer of spatial resolution. This image shows a monochromatic hard X-rays patterns from a single crystal gold particle, which produces a speckle-like fringe image. Inverting such "diffraction images" under certain conditions can result in a high-resolution distribution of the electron density (amplitude) and strain of the lattice structure (phase shift).

Credit: Image courtesy Wenge Yang

Abstract:
A team of researchers has made a major breakthrough in measuring the structure of nanomaterials under extremely high pressures. For the first time, they developed a way to get around the severe distortions of high-energy X-ray beams that are used to image the structure of a gold nanocrystal. The technique, described in April 9, 2013, issue of Nature Communications, could lead to advancements of new nanomaterials created under high pressures and a greater understanding of what is happening in planetary interiors.

Nanotechnology imaging breakthrough

Washington, DC | Posted on April 9th, 2013

Lead author of the study, Wenge Yang of the Carnegie Institution's High Pressure Synergetic Consortium explained: "The only way to see what happens to such samples when under pressure is to use high-energy X-rays produced by synchrotron sources. Synchrotrons can provide highly coherent X-rays for advanced 3-D imaging with tens of nanometers of resolution. This is different from incoherent X-ray imaging used for medical examination that has micron spatial resolution. The high pressures fundamentally change many properties of the material."

The team found that by averaging the patterns of the bent waves—the diffraction patterns—of the same crystal using different sample alignments in the instrumentation, and by using an algorithm developed by researchers at the London Centre for Nanotechnology, they can compensate for the distortion and improve spatial resolution by two orders of magnitude.

"The wave distortion problem is analogous to prescribing eyeglasses for the diamond anvil cell to correct the vision of the coherent X-ray imaging system," remarked Ian Robinson, leader of the London team.

The researchers subjected a 400-nanometer (.000015 inch) single crystal of gold to pressures from about 8,000 times the pressure at sea level to 64,000 times that pressure, which is about the pressure in Earth's upper mantle, the layer between the outer core and crust.

The team conducted the imaging experiment at the Advanced Photon Source, Argonne National Laboratory. They compressed the gold nanocrystal and found at first, as expected, that the edges of the crystal become sharp and strained. But to their complete surprise, the strains disappeared upon further compression. The crystal developed a more rounded shape at the highest pressure, implying an unusual plastic-like flow.

"Nanogold particles are very useful materials," remarked Yang. "They are about 60% stiffer compared with other micron-sized particles and could prove pivotal for constructing improved molecular electrodes, nanoscale coatings, and other advanced engineering materials. The new technique will be critical for advances in these areas."

"Now that the distortion problem has been solved, the whole field of nanocrystal structures under pressure can be accessed," said Robinson. "The scientific mystery of why nanocrystals under pressure are somehow up to 60% stronger than bulk material may soon be unraveled."

This work was supported by EFree, an Energy Frontier Research Center funded by DOE-BES. The Advanced Photon Source is supported by DOE-BES.

####

About Carnegie Institution
The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology,

For more information, please click here

Contacts:
Wenge Yang

630-252-0487

Copyright © Carnegie Institution

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Laboratories

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Imaging

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Tools

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE