Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotechnology imaging breakthrough

Highly coherent X-rays from synchrotron sources can be used for imaging nanomaterials in 3-D at tens of nanometer of spatial resolution. This image shows a monochromatic hard X-rays patterns from a single crystal gold particle, which produces a speckle-like fringe image. Inverting such "diffraction images" under certain conditions can result in a high-resolution distribution of the electron density (amplitude) and strain of the lattice structure (phase shift).

Credit: Image courtesy Wenge Yang
Highly coherent X-rays from synchrotron sources can be used for imaging nanomaterials in 3-D at tens of nanometer of spatial resolution. This image shows a monochromatic hard X-rays patterns from a single crystal gold particle, which produces a speckle-like fringe image. Inverting such "diffraction images" under certain conditions can result in a high-resolution distribution of the electron density (amplitude) and strain of the lattice structure (phase shift).

Credit: Image courtesy Wenge Yang

Abstract:
A team of researchers has made a major breakthrough in measuring the structure of nanomaterials under extremely high pressures. For the first time, they developed a way to get around the severe distortions of high-energy X-ray beams that are used to image the structure of a gold nanocrystal. The technique, described in April 9, 2013, issue of Nature Communications, could lead to advancements of new nanomaterials created under high pressures and a greater understanding of what is happening in planetary interiors.

Nanotechnology imaging breakthrough

Washington, DC | Posted on April 9th, 2013

Lead author of the study, Wenge Yang of the Carnegie Institution's High Pressure Synergetic Consortium explained: "The only way to see what happens to such samples when under pressure is to use high-energy X-rays produced by synchrotron sources. Synchrotrons can provide highly coherent X-rays for advanced 3-D imaging with tens of nanometers of resolution. This is different from incoherent X-ray imaging used for medical examination that has micron spatial resolution. The high pressures fundamentally change many properties of the material."

The team found that by averaging the patterns of the bent waves—the diffraction patterns—of the same crystal using different sample alignments in the instrumentation, and by using an algorithm developed by researchers at the London Centre for Nanotechnology, they can compensate for the distortion and improve spatial resolution by two orders of magnitude.

"The wave distortion problem is analogous to prescribing eyeglasses for the diamond anvil cell to correct the vision of the coherent X-ray imaging system," remarked Ian Robinson, leader of the London team.

The researchers subjected a 400-nanometer (.000015 inch) single crystal of gold to pressures from about 8,000 times the pressure at sea level to 64,000 times that pressure, which is about the pressure in Earth's upper mantle, the layer between the outer core and crust.

The team conducted the imaging experiment at the Advanced Photon Source, Argonne National Laboratory. They compressed the gold nanocrystal and found at first, as expected, that the edges of the crystal become sharp and strained. But to their complete surprise, the strains disappeared upon further compression. The crystal developed a more rounded shape at the highest pressure, implying an unusual plastic-like flow.

"Nanogold particles are very useful materials," remarked Yang. "They are about 60% stiffer compared with other micron-sized particles and could prove pivotal for constructing improved molecular electrodes, nanoscale coatings, and other advanced engineering materials. The new technique will be critical for advances in these areas."

"Now that the distortion problem has been solved, the whole field of nanocrystal structures under pressure can be accessed," said Robinson. "The scientific mystery of why nanocrystals under pressure are somehow up to 60% stronger than bulk material may soon be unraveled."

This work was supported by EFree, an Energy Frontier Research Center funded by DOE-BES. The Advanced Photon Source is supported by DOE-BES.

####

About Carnegie Institution
The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology,

For more information, please click here

Contacts:
Wenge Yang

630-252-0487

Copyright © Carnegie Institution

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Oxford Instruments Asylum Research in Conjunction with the MRS OnDemand® Webinar Series Presents: “Beyond Topography: New Advances in AFM Characterization of Polymers” May 28, 2015 May 5th, 2015

News and information

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Laboratories

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Electron chirp: Cyclotron radiation from single electrons measured directly for first time: Method has potential to measure neutrino mass and look beyond the Standard Model of the universe April 29th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New chip architecture may provide foundation for quantum computer: Researchers at the Georgia Tech Research Institute have developed a microfabricated ion trap architecture that holds promise for increasing the density of qubits in future quantum computers May 5th, 2015

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Defects in atomically thin semiconductor emit single photons: Researchers create optically active quantum dots in 2-D semiconductor for the first time; may have applications for integrated photonics May 4th, 2015

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Discoveries

Improving organic transistors that drive flexible and conformable electronics: UMass Amherst scientists advance understanding of strain effects on performance May 5th, 2015

New chip architecture may provide foundation for quantum computer: Researchers at the Georgia Tech Research Institute have developed a microfabricated ion trap architecture that holds promise for increasing the density of qubits in future quantum computers May 5th, 2015

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Iranian Scientists Present Model to Study Mechanical Vibrations of Structures Containing Nanocomposites May 5th, 2015

Announcements

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Tools

Oxford Instruments Asylum Research in Conjunction with the MRS OnDemand® Webinar Series Presents: “Beyond Topography: New Advances in AFM Characterization of Polymers” May 28, 2015 May 5th, 2015

Iranian Scientists Present Model to Study Mechanical Vibrations of Structures Containing Nanocomposites May 5th, 2015

Nanometrics to Present at the B. Riley & Co. 16th Annual Investor Conference May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project