Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Watching fluid flow at nanometer scales: Researchers find that tiny nanowires can lift liquids as effectively as tubes

Researchers find that tiny nanowires can lift liquids as effectively as tubes.
Researchers find that tiny nanowires can lift liquids as effectively as tubes.

Abstract:
Imagine if you could drink a glass of water just by inserting a solid wire into it and sucking on it as though it were a soda straw. It turns out that if you were tiny enough, that method would work just fine and wouldn't even require the suction to start.

Watching fluid flow at nanometer scales: Researchers find that tiny nanowires can lift liquids as effectively as tubes

Cambridge, MA | Posted on April 1st, 2013

New research carried out at MIT and elsewhere has demonstrated for the first time that when inserted into a pool of liquid, nanowires wires that are only hundreds of nanometers (billionths of a meter) across naturally draw the liquid upward in a thin film that coats the surface of the wire. The finding could have applications in microfluidic devices, biomedical research and inkjet printers.

The phenomenon had been predicted by theorists, but never observed because the process is too small to be seen by optical microscopes; electron microscopes need to operate in a vacuum, which would cause most liquids to evaporate almost instantly. To overcome this, the MIT team used an ionic liquid called DMPI-TFSI, which remains stable even in a powerful vacuum. Though the observations used this specific liquid, the results are believed to apply to most liquids, including water.

The results are published in the journal Nature Nanotechnology by a team of researchers led by Ju Li, an MIT professor of nuclear science and engineering and materials science and engineering, along with researchers at Sandia National Laboratories in New Mexico, the University of Pennsylvania, the University of Pittsburgh, and Zhejiang University in China.

While Li says this research intended to explore the basic science of liquid-solid interactions, it could lead to applications in inkjet printing, or for making a lab on a chip. "We're really looking at fluid flow at an unprecedented small length scale," Li says so unexpected new phenomena could emerge as the research continues.

At molecular scale, Li says, "the liquid tries to cover the solid surface, and it gets sucked up by capillary action." At the smallest scales, when the liquid forms a film less than 10 nanometers thick, it moves as a smooth layer (called a "precursor film"); as the film gets thicker, an instability (called a Rayleigh instability) sets in, causing droplets to form, but the droplets remain connected via the precursor film. In some cases, these droplets continue to move up the nanowire, while in other cases the droplets appear stationary even as the liquid within them flows upward.

The difference between the smooth precursor film and the beads, Li says, is that in the thinner film, each molecule of liquid is close enough to directly interact, through quantum-mechanical effects, with the molecules of the solid buried beneath it; this force suppresses the Rayleigh instability that would otherwise cause beading. But with or without beading, the upward flow of the liquid, defying the pull of gravity, is a continuous process that could be harnessed for small-scale liquid transport.

Although this upward pull is always present with wires at this tiny scale, the effect can be further enhanced in various ways: Adding an electric voltage on the wire increases the force, as does a slight change in the profile of the wire so that it tapers toward one end. The researchers used nanowires made of different materials silicon, zinc oxide and tin oxide, as well as two-dimensional graphene to demonstrate that this process applies to many different materials.

Nanowires are less than one-tenth the diameter of fluidic devices now used in biological and medical research, such as micropipettes, and one-thousandth the diameter of hypodermic needles. At these small scales, the researchers found, a solid nanowire is just as effective at holding and transferring liquids as a hollow tube. This smaller scale might pave the way for new kinds of microelectromechanical systems to carry out research on materials at a molecular level.

The methodology the researchers developed allows them to study the interactions between solids and liquid flow "at almost the smallest scale you could define a fluid volume, which is 5 to 10 nanometers across," Li says. The team now plans to examine the behavior of different liquids, using a "sandwich" of transparent solid membranes to enclose a liquid, such as water, for examination in a transmission electron microscope. This will allow "more systematic studies of solid-liquid interactions," Li says interactions that are relevant to corrosion, electrodeposition and the operation of batteries.

The research was supported by Sandia National Laboratories, the U.S. Department of Energy, and the National Science Foundation.

####

For more information, please click here

Contacts:
Sarah McDonnell

617-253-8923

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Imaging

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Laboratories

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Discovery of gold nanocluster 'double' hints at other shape-changing particles: New analysis approach brings two unique atomic structures into focus June 19th, 2016

Efficient hydrogen production made easy: Sticking electrons to a semiconductor with hydrazine creates an electrocatalyst June 17th, 2016

Discovery of gold nanocluster 'double' hints at other shape changing particles: New analysis approach brings two unique atomic structures into focus June 15th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Nanoelectronics

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Announcements

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Tools

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

Efficient hydrogen production made easy: Sticking electrons to a semiconductor with hydrazine creates an electrocatalyst June 17th, 2016

A New Approach To Building Efficient Thermoelectric Nanomaterials June 17th, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic