Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Watching fluid flow at nanometer scales: Researchers find that tiny nanowires can lift liquids as effectively as tubes

Researchers find that tiny nanowires can lift liquids as effectively as tubes.
Researchers find that tiny nanowires can lift liquids as effectively as tubes.

Abstract:
Imagine if you could drink a glass of water just by inserting a solid wire into it and sucking on it as though it were a soda straw. It turns out that if you were tiny enough, that method would work just fine and wouldn't even require the suction to start.

Watching fluid flow at nanometer scales: Researchers find that tiny nanowires can lift liquids as effectively as tubes

Cambridge, MA | Posted on April 1st, 2013

New research carried out at MIT and elsewhere has demonstrated for the first time that when inserted into a pool of liquid, nanowires wires that are only hundreds of nanometers (billionths of a meter) across naturally draw the liquid upward in a thin film that coats the surface of the wire. The finding could have applications in microfluidic devices, biomedical research and inkjet printers.

The phenomenon had been predicted by theorists, but never observed because the process is too small to be seen by optical microscopes; electron microscopes need to operate in a vacuum, which would cause most liquids to evaporate almost instantly. To overcome this, the MIT team used an ionic liquid called DMPI-TFSI, which remains stable even in a powerful vacuum. Though the observations used this specific liquid, the results are believed to apply to most liquids, including water.

The results are published in the journal Nature Nanotechnology by a team of researchers led by Ju Li, an MIT professor of nuclear science and engineering and materials science and engineering, along with researchers at Sandia National Laboratories in New Mexico, the University of Pennsylvania, the University of Pittsburgh, and Zhejiang University in China.

While Li says this research intended to explore the basic science of liquid-solid interactions, it could lead to applications in inkjet printing, or for making a lab on a chip. "We're really looking at fluid flow at an unprecedented small length scale," Li says so unexpected new phenomena could emerge as the research continues.

At molecular scale, Li says, "the liquid tries to cover the solid surface, and it gets sucked up by capillary action." At the smallest scales, when the liquid forms a film less than 10 nanometers thick, it moves as a smooth layer (called a "precursor film"); as the film gets thicker, an instability (called a Rayleigh instability) sets in, causing droplets to form, but the droplets remain connected via the precursor film. In some cases, these droplets continue to move up the nanowire, while in other cases the droplets appear stationary even as the liquid within them flows upward.

The difference between the smooth precursor film and the beads, Li says, is that in the thinner film, each molecule of liquid is close enough to directly interact, through quantum-mechanical effects, with the molecules of the solid buried beneath it; this force suppresses the Rayleigh instability that would otherwise cause beading. But with or without beading, the upward flow of the liquid, defying the pull of gravity, is a continuous process that could be harnessed for small-scale liquid transport.

Although this upward pull is always present with wires at this tiny scale, the effect can be further enhanced in various ways: Adding an electric voltage on the wire increases the force, as does a slight change in the profile of the wire so that it tapers toward one end. The researchers used nanowires made of different materials silicon, zinc oxide and tin oxide, as well as two-dimensional graphene to demonstrate that this process applies to many different materials.

Nanowires are less than one-tenth the diameter of fluidic devices now used in biological and medical research, such as micropipettes, and one-thousandth the diameter of hypodermic needles. At these small scales, the researchers found, a solid nanowire is just as effective at holding and transferring liquids as a hollow tube. This smaller scale might pave the way for new kinds of microelectromechanical systems to carry out research on materials at a molecular level.

The methodology the researchers developed allows them to study the interactions between solids and liquid flow "at almost the smallest scale you could define a fluid volume, which is 5 to 10 nanometers across," Li says. The team now plans to examine the behavior of different liquids, using a "sandwich" of transparent solid membranes to enclose a liquid, such as water, for examination in a transmission electron microscope. This will allow "more systematic studies of solid-liquid interactions," Li says interactions that are relevant to corrosion, electrodeposition and the operation of batteries.

The research was supported by Sandia National Laboratories, the U.S. Department of Energy, and the National Science Foundation.

####

For more information, please click here

Contacts:
Sarah McDonnell

617-253-8923

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Laboratories

Exploring phosphorene, a promising new material April 29th, 2016

Imaging

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

Nanoelectronics

Exploring phosphorene, a promising new material April 29th, 2016

Physicists build 'electronic synapses' for neural networks April 21st, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Discoveries

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Announcements

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Tools

Exploring phosphorene, a promising new material April 29th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Bruker Introduces Dimension FastScan Pro Industrial AFM: Providing Nanometer-Resolution at High Scan Rates for up to 300-mm Samples April 26th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Adding some salt to the recipe for energy storage materials: Researchers use common table salt as growth template April 22nd, 2016

Cleaning up hybrid battery electrodes improves capacity and lifespan: New way of building supercapacitor-battery electrodes eliminates interference from inactive components April 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic