Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Physicists develop a new approach to quantum computing: Quantum computers counting on carbon nanotubes

Like a guitar string nanotubes (black) can be clamped and excited to vibrate. An electric field (electrodes: blue) ensures that two of the many possible states can be selectively addressed. Image: M.J. Hartmann, TUM
Like a guitar string nanotubes (black) can be clamped and excited to vibrate. An electric field (electrodes: blue) ensures that two of the many possible states can be selectively addressed.

Image: M.J. Hartmann, TUM

Abstract:
Carbon nanotubes can be used as quantum bits for quantum computers. A study by physicists at the Technische Universitaet Muenchen has shown how nanotubes can store information in the form of vibrations. Up to now, researchers have experimented primarily with electrically charged particles. Because nanomechanical devices are not charged, they are much less sensitive to electrical interference.

Physicists develop a new approach to quantum computing: Quantum computers counting on carbon nanotubes

Munich, Germany | Posted on March 21st, 2013

Using quantum mechanical phenomena, computers could be much more powerful than their classical digital predecessors. Scientists all over the world are working to explore the basis for quantum computing. To date most systems are based on electrically charged particles that are held in an "electromagnetic trap." A disadvantage of these systems is that they are very sensitive to electromagnetic interference and therefore need extensive shielding. Physicists at the Technische Universitaet Muenchen have now found a way for information to be stored and quantum mechanically processed in mechanical vibrations.

Playing a nano-guitar

A carbon nanotube that is clamped at both ends can be excited to oscillate. Like a guitar string, it vibrates for an amazingly long time. "One would expect that such a system would be strongly damped, and that the vibration would subside quickly," says Simon Rips, first author of the publication. "In fact, the string vibrates more than a million times. The information is thus retained up to one second. That is long enough to work with."

Since such a string oscillates among many physically equivalent states, the physicists resorted to a trick: an electric field in the vicinity of the nanotube ensures that two of these states can be selectively addressed. The information can then be written and read optoelectronically. "Our concept is based on available technology," says Michael Hartmann, head of the Emmy Noether research group Quantum Optics and Quantum Dynamics at the TU Muenchen. "It could take us a step closer to the realization of a quantum computer."

The research was supported by the German Research Council (DFG) within the Emmy-Noether program and SFB 631.

####

For more information, please click here

Contacts:
Dr. Andreas Battenberg

49-892-891-0510

Dr. Michael J. Hartmann
Technische Universitaet Muenchen
Department of Physics, Emmy Noether research group
“Quantum Optics and Quantum Dynamics” (T 34)
85747 Garching, Germany
Tel.: +49 89 289 12884;

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication:

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Chip Technology

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

Nanotubes/Buckyballs

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

Iranian Scientists Eliminate Expensive Materials from Diabetes Diagnosis Sensors March 25th, 2015

Effect of Carbon Nanotubes on Properties of Cement Composites Studied in Iran March 23rd, 2015

First proof of isolated attosecond pulse generation at the carbon K-edge March 20th, 2015

Quantum Computing

A first glimpse inside a macroscopic quantum state March 28th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Building shape inspires new material discovery March 24th, 2015

Quantum cause and effect March 23rd, 2015

Nanoelectronics

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Sharper nanoscopy: What happens when a quantum dot looks in a mirror? March 19th, 2015

Discoveries

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE