Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Electrical signals dictate optical properties

Abstract:
Researchers at the University of Southampton's Optoelectronics Research Centre (ORC) have created an artificial material, a metamaterial, with optical properties that can be controlled by electric signals.

Electrical signals dictate optical properties

Southampton, UK | Posted on March 19th, 2013

Photonic metamaterials are artificial materials created by precise and extremely fine structuring of conventional media using nanotechnology. They offer numerous new applications from cloaking to radically improved solar cells. However, the properties of metamaterials are usually fixed.

Dr Eric Plum, Research Lecturer at the ORC, explains: "We have found a fast and reliable way of coordinating the motion of thousands of metamaterial building blocks. We shift them by distances smaller than the diameter of a human hair. These minute rearrangements are sufficient to radically change the transmission and reflection characteristics of the metamaterial. We do this by engaging the same force that sticks a small piece of paper to a comb after brushing. In essence, we dictate the movement of metamaterial building blocks with electrical signals, and we can do this very fast."

Seen as an enabling technology of the future, metamaterials research has grown rapidly in the past decade. The University's Centre for Photonic Metamaterials is supported by the Engineering and Physical Sciences Research Council and is at the forefront of this development. Director of the Centre Professor Nikolay Zheludev says: "Thanks to nanotechnology we need not depend only on natural materials; we can now engineer optical properties and change them at will. Light-enabled technologies are vital to the 21st century and photonic metamaterials will have a broad impact."

####

For more information, please click here

Contacts:
Glenn Harris

44-023-805-93212

Copyright © University of Southampton

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

This work is now published in Nature Nanotechnology. To read the full article visit:

For an overview of metamaterials research at the University of Southampton see:

Related News Press

News and information

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Discoveries

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Materials/Metamaterials

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Announcements

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Military

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Energy

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Photonics/Optics/Lasers

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Solar/Photovoltaic

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Perovskite solar technology shows quick energy returns: New technology beats current solar panel technology in life-cycle energy assessment July 20th, 2015

Nanowires give 'solar fuel cell' efficiency a tenfold boost: Eindhoven researchers make important step towards a solar cell that generates hydrogen July 17th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project