Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Taking transistors into a new dimension



© X-L Han and G. Larrieu Diagram of a 3D nano-transistor showing the gate (red) surrounding the vertical nanowires (green) and separating the contacts at the ends of each nanowire (beige).
© X-L Han and G. Larrieu Diagram of a 3D nano-transistor showing the gate (red) surrounding the vertical nanowires (green) and separating the contacts at the ends of each nanowire (beige).

Abstract:
A new breakthrough could push the limits of the miniaturization of electronic components further than previously thought possible. A team at the Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS-CNRS, Toulouse) and Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN, CNRS / University of Lille 1 / University of Valenciennes and Hainaut-Cambresis / Isen) has built a nanometric transistor that displays exceptional properties for a device of its size. To achieve this result, the researchers developed a novel three-dimensional architecture consisting of a vertical nanowire array whose conductivity is controlled by a gate measuring only 14 nm in length. Published in Nanoscale, these findings open the way toward alternatives to the planar structures used in microprocessors and memory units. The use of 3D transistors could significantly increase the power of microelectronic devices.

Taking transistors into a new dimension

Paris, France | Posted on March 12th, 2013

The "building blocks" of microelectronics, transistors consist of a semiconductor component, called channel, linking two terminals. The flow of current between these terminals is controlled by a third terminal, called gate. Acting like a switch, the gate determines whether the transistor is on or off. Over the past 50 years, transistors have been steadily reduced in size, enabling the development of increasingly powerful microelectronic devices. However, it is generally agreed that today's transistors, with their planar architecture, are nearing the limits of miniaturization: there is a minimum size under which the gate control over the channel becomes less and less effective. In particular, leakage currents begin to interfere with the logical operations performed by the transistor array. To overcome this problem, researchers around the world are investigating alternatives that will allow the race for miniaturization to continue.

A team of researchers at the LAAS and IEMN has now built the first truly three-dimensional nanometric transistor. The device consists of a tight vertical nanowire array of about 200 nm in length linking two conductive surfaces. A chromium gate completely surrounds each nanowire and controls the flow of current, resulting in optimum transistor control for a system of this size. The gate is only 14 nm in length, compared with 28 nm for the transistors in today's chips, but its capacity to control the current in the transistor's channel meets the requirements of contemporary microelectronics.

This architecture could lead to the development of microprocessors in which the transistors are stacked together. The number of transistors in a given space could thus be increased considerably, along with the performance capacity of microprocessors and memory units. Another significant advantage of these components is that they are relatively simple to manufacture and do not require high-resolution lithography.[1] In addition, these 3D transistors could be easily integrated into the conventional microelectronic devices used by the industry today.

A patent has been filed for these transistors. The researchers now plan to continue their efforts to further reduce the size of the gate, which they believe could be made smaller than 10 nm while still providing satisfactory control over the transistor. In addition, the team is looking for industrial partners to help design the electronic devices of the future using the 3D architecture of these novel transistors.

[1] A common technique for surface texturing in micro / nano technology, lithography is used to transfer predefined motifs onto a sensitive resin.

Full bibliographic information

Vertical nanowire array-based field effect transistors for ultimate scaling.. G. Larrieu and X.-L. Han. Nanoscale, online as of 23 January 2013 (doi:10..1039/C3NR33738C).

####

For more information, please click here

Contacts:
Julien Guillaume
+ 33 1 44 96 51 51


Researcher
Guilhem Larrieu
Tel +33 (0)5 61 33 79 84


CNRS press officer
Ornella Piu
Tel +33 (0)1 44 96 43 09

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Chip Technology

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

Nanoelectronics

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

GLOBALFOUNDRIES to Deliver Industry’s Leading-Performance Offering of 7nm FinFET Technology: Company extends its leading-edge roadmap for products demanding the ultimate processing power September 15th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Announcements

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Patents/IP/Tech Transfer/Licensing

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic