Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Taking transistors into a new dimension



© X-L Han and G. Larrieu Diagram of a 3D nano-transistor showing the gate (red) surrounding the vertical nanowires (green) and separating the contacts at the ends of each nanowire (beige).
© X-L Han and G. Larrieu Diagram of a 3D nano-transistor showing the gate (red) surrounding the vertical nanowires (green) and separating the contacts at the ends of each nanowire (beige).

Abstract:
A new breakthrough could push the limits of the miniaturization of electronic components further than previously thought possible. A team at the Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS-CNRS, Toulouse) and Institut d'Électronique, de Microélectronique et de Nanotechnologie (IEMN, CNRS / University of Lille 1 / University of Valenciennes and Hainaut-Cambresis / Isen) has built a nanometric transistor that displays exceptional properties for a device of its size. To achieve this result, the researchers developed a novel three-dimensional architecture consisting of a vertical nanowire array whose conductivity is controlled by a gate measuring only 14 nm in length. Published in Nanoscale, these findings open the way toward alternatives to the planar structures used in microprocessors and memory units. The use of 3D transistors could significantly increase the power of microelectronic devices.

Taking transistors into a new dimension

Paris, France | Posted on March 12th, 2013

The "building blocks" of microelectronics, transistors consist of a semiconductor component, called channel, linking two terminals. The flow of current between these terminals is controlled by a third terminal, called gate. Acting like a switch, the gate determines whether the transistor is on or off. Over the past 50 years, transistors have been steadily reduced in size, enabling the development of increasingly powerful microelectronic devices. However, it is generally agreed that today's transistors, with their planar architecture, are nearing the limits of miniaturization: there is a minimum size under which the gate control over the channel becomes less and less effective. In particular, leakage currents begin to interfere with the logical operations performed by the transistor array. To overcome this problem, researchers around the world are investigating alternatives that will allow the race for miniaturization to continue.

A team of researchers at the LAAS and IEMN has now built the first truly three-dimensional nanometric transistor. The device consists of a tight vertical nanowire array of about 200 nm in length linking two conductive surfaces. A chromium gate completely surrounds each nanowire and controls the flow of current, resulting in optimum transistor control for a system of this size. The gate is only 14 nm in length, compared with 28 nm for the transistors in today's chips, but its capacity to control the current in the transistor's channel meets the requirements of contemporary microelectronics.

This architecture could lead to the development of microprocessors in which the transistors are stacked together. The number of transistors in a given space could thus be increased considerably, along with the performance capacity of microprocessors and memory units. Another significant advantage of these components is that they are relatively simple to manufacture and do not require high-resolution lithography.[1] In addition, these 3D transistors could be easily integrated into the conventional microelectronic devices used by the industry today.

A patent has been filed for these transistors. The researchers now plan to continue their efforts to further reduce the size of the gate, which they believe could be made smaller than 10 nm while still providing satisfactory control over the transistor. In addition, the team is looking for industrial partners to help design the electronic devices of the future using the 3D architecture of these novel transistors.

[1] A common technique for surface texturing in micro / nano technology, lithography is used to transfer predefined motifs onto a sensitive resin.

Full bibliographic information

Vertical nanowire array-based field effect transistors for ultimate scaling.. G. Larrieu and X.-L. Han. Nanoscale, online as of 23 January 2013 (doi:10..1039/C3NR33738C).

####

For more information, please click here

Contacts:
Julien Guillaume
+ 33 1 44 96 51 51


Researcher
Guilhem Larrieu
Tel +33 (0)5 61 33 79 84


CNRS press officer
Ornella Piu
Tel +33 (0)1 44 96 43 09

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Chip Technology

Nanometrics Announces Upcoming Investor Events November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Nanoelectronics

Leti Will Present 17 Papers at 2014 IEDM; the Highest-ever Total Includes Four Invited Papers: Institute also Will Present its Latest Results in Key Technologies and Its Roadmap for Silicon Nano-technologies at Workshop November 13th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Discoveries

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Patents/IP/Tech Transfer/Licensing

Dicerna Announces License Agreement with Tekmira to Advance Dicerna’s PH1 Development Program November 17th, 2014

First genetic-based tool to detect circulating cancer cells in blood: NanoFlares light up individual cells if breast cancer biomarker is present November 17th, 2014

Ki-Bum Lee Patents Technology To Advance Stem Cell Therapeutics November 13th, 2014

'Direct writing' of diamond patterns from graphite a potential technological leap November 5th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE