Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Dopants Dramatically Alter Electronic Structure of Superconductor: Findings explain unusual properties, but complicate search for universal theory

Scientists have found that the substitution of cobalt atoms into the crystal framework of an iron-based material—which is required to convert the material from a magnet into a superconductor—also introduces elongated impurity states at each cobalt atom (note the directional alignment of "twin" peaks around each cobalt atom in the electronic structure map). These elongated impurities then scatter electrons in an asymmetric way that explains many of the material's unusual properties, and could eventually lead to the design of new types of superconductors for practical applications in energy transmission and storage.
Scientists have found that the substitution of cobalt atoms into the crystal framework of an iron-based material—which is required to convert the material from a magnet into a superconductor—also introduces elongated impurity states at each cobalt atom (note the directional alignment of "twin" peaks around each cobalt atom in the electronic structure map). These elongated impurities then scatter electrons in an asymmetric way that explains many of the material's unusual properties, and could eventually lead to the design of new types of superconductors for practical applications in energy transmission and storage.

Abstract:
Over the last quarter century, scientists have discovered a handful of materials that can be converted from magnetic insulators or metals into "superconductors" able to carry electrical current with no energy loss-an enormously promising idea for new types of zero-resistance electronics and energy-storage and transmission systems. At present, a key step to achieving superconductivity (in addition to keeping the materials very cold) is to substitute a different kind of atom into some positions of the "parent" material's crystal framework. Until now, scientists thought this process, called doping, simply added more electrons or other charge carriers, thereby rendering the electronic environment more conducive to the formation of electron pairs that could move with no energy loss if the material is held at a certain chilly temperature.

Dopants Dramatically Alter Electronic Structure of Superconductor: Findings explain unusual properties, but complicate search for universal theory

Upton, NY | Posted on February 18th, 2013

Now, new studies of an iron-based superconductor by an international team of scientists - including physicists from the U.S. Department of Energy's Brookhaven National Laboratory and Cornell University - suggest that the story is somewhat more complicated. Their research, published online in Nature Physics February 17, 2013,* demonstrates that doping, in addition to adding electrons, dramatically alters the atomic-scale electronic structure of the parent material, with important consequences for the behavior of the current-carrying electrons.

"The key observation - that dopant atoms introduce elongated impurity states which scatter electrons in the material in an asymmetric way - helps explain most of the unusual properties," said J.C. Séamus Davis, the study's lead author, who directs the Center for Emergent Superconductivity at Brookhaven Lab and is also the J.G. White Distinguished Professor of Physical Sciences at Cornell University. "Our findings provide a new starting point for theorists trying to grapple with how these materials work, and could potentially point to new ways to design superconductors with improved properties," he said.

The researchers used a technique developed by Davis called spectroscopic imaging scanning tunneling microscopy to visualize the electronic properties around individual dopant atoms in the parent material, and to simultaneously monitor how electrons scatter around these dopants (in this case, cobalt).

Earlier studies had shown that certain electronic properties of the non-superconducting "parent" material had a strong directional dependence - for example, electrons were able to move more easily in one direction through the crystal than in the perpendicular direction. However, in those studies, the signal of a strong directional dependence only appeared when the scientists put the dopants into the material, and got stronger the more dopants they added.

Before this, the assumption was that dopants simply added electrons, and that the material's properties - including the emergence of superconductivity - were due to some intrinsic characteristic (for example, the alternating alignments of electron spins on adjacent atoms) that resulted in a directional dependence.

"But the emergence of directional dependence of electronic properties as more dopants are added suggests that the strong directionality is a result of the dopants, not an intrinsic property of the material," Davis said. "We decided to test this idea by directly imaging what each dopant atom does to the nearby atomic-level electronic structure in these materials."

According to Davis, the current paper reports two very clear results:

1) At each cobalt dopant atom, there is an elongated impurity state-a quantum mechanical state bound to the cobalt atom-that aligns in a particular direction (the same for each cobalt atom) relative to the overall crystal.
2) These oblong, aligned impurity states scatter the current-carrying electrons away from the impurity state in an asymmetric way - similar to the way ripples of water would propagate asymmetrically outward from an elongated stick thrown into a pond, rather than forming the circular pattern produced by a pebble.

"These direct observational findings explain most of the outstanding mysteries about how the electrical current moves through these materials - for example, with greater ease perpendicular to the direction you would expect based solely on the characteristics of the parent material," Davis said. "The results show that the dopants actually do dramatic things to the electronic structure of the parent material."

"It's possible that what we've found could be similar to an effect dopants had on early semiconductors," Davis said. "Early versions of these materials, though useful, had nowhere near the performance as those developed after the 1970s, when scientists at Bell Labs figured out a way to move the dopant atoms far away from the electrons so they wouldn't mess up the electronic structure." That advance made possible all the microelectronics we now use every day, including cell phones, he said.

"If we find out the dopant atoms are doing something we don't want in the iron and even copper superconductors, maybe we can find a way to move them away from the active electrons to make more useful materials."

Brookhaven's role in this research was supported by the Center for Emergent Superconductivity, a DOE Energy Frontier Research Center headquartered at Brookhaven National Laboratory. Additional funding was provided by the DOE Office of Science (Ames Laboratory), the National Science Foundation, the U.K. Engineering and Physical Sciences Research Council, the Scottish Funding Council, and the Netherlands Organization for Scientific Research.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more (www.bnl.gov/newsroom) or follow Brookhaven Lab on Twitter (twitter.com/BrookhavenLab).

For more information, please click here

Contacts:
Karen McNulty Walsh

(631) 344-8350
or
Peter Genzer

(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific paper (including a full list of collaborators): Anisotropic Impurity-States, Quasiparticle Scattering and Nematic Transport in Underdoped Ca(Fe1-xCox)2As:

Related News Press

News and information

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Malvern reports on the publication of the 1000th peer-reviewed paper to cite NanoSight’s Nanoparticle Tracking Analysis, NTA April 16th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Affordable High Precision XY Nanopositioning Piezo Stage April 15th, 2014

Laboratories

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Peter B. Littlewood appointed Director of Argonne National Laboratory March 26th, 2014

Scientists Track 3D Nanoscale Changes in Rechargeable Battery Material During Operation: First 3D nanoscale observations of microstructural degradation during charge-discharge cycles could point to new ways to engineer battery electrode materials for better performance March 26th, 2014

Superconductivity

Drexel Researchers Open Path to Finding Rare, Polarized Metals April 2nd, 2014

Pseudogap theory puts physicists closer to high temperature superconductors March 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Chip Technology

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Clean Shot at Manufacturing Course…For Less April 9th, 2014

Discoveries

Nanocrystalline cellulose modified into an efficient viral inhibitor April 15th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Materials/Metamaterials

Engineers develop new materials for hydrogen storage April 15th, 2014

Industrial Nanotech, Inc. Lands First Major Order from Pemex, Mexico’s State-Owned Oil and Gas Company April 14th, 2014

Properties of Coatings Used in Electrical Insulators Modified by Iranian Researchers April 14th, 2014

Graphene Supermarket to offer HDPlas™ by Haydale, a High-Performance Graphene Material April 10th, 2014

Announcements

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Malvern reports on the publication of the 1000th peer-reviewed paper to cite NanoSight’s Nanoparticle Tracking Analysis, NTA April 16th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Trees go high-tech: process turns cellulose into energy storage devices April 7th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE