Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > X-ray microscopy technique makes fluctuations inside of materials visible: Microscopic X-ray view

Experimental setup: The test object is moved with nanometer precision through the X-ray beam. The scattered X-rays are captured by a detector. The scattering images are then reconstructed to an image of the sample.
Experimental setup: The test object is moved with nanometer precision through the X-ray beam. The scattered X-rays are captured by a detector. The scattering images are then reconstructed to an image of the sample.

Abstract:
X-ray microscopy requires radiation of extremely high quality. In order to obtain sharp images instrument and sample must stay absolutely immobile even at the nanometer scale during the recording. Researchers at the Technische Universitaet Muenchen and the Paul Scherrer Institute in Villigen (Switzerland), have now developed a method that relaxes these hard restrictions. Even fluctuations in the material can be visualized. The renowned journal Nature now reports on their results.

X-ray microscopy technique makes fluctuations inside of materials visible: Microscopic X-ray view

Munich, Germany | Posted on February 6th, 2013

For more than 100 years radiography meant: don't move! In order to visualize nanostructures such as biological cells, the porous structure of cement or storage fields of magnetic disks, the experimentators had to avoid any kind of vibration of X-ray microscope and sample. In addition, only a small percentage fraction of the incoming X-ray radiation could be used. Using special filters, they had to select exactly the fraction with the right properties - for example, the right wavelength.

Contributions of different wavelengths separated

Pierre Thibault of the Technische Universitaet Muenchen and Andreas Menzel, scientist at the Paul Scherrer Institute (Villigen, Switzerland) have now developed an interpretation method that produces reliable images in spite of vibrations or fluctuations. The method is based on a technique called "ptychography", developed in the 1960s for electron microscopy. Thibault and Menzel's advancements now make it possible to distinguish effects originating from the contribution of different types of X-ray waves.

Fluctuations visualized

Probably the most significant result of the study is that it gives access to a whole class of objects that previously could hardly be investigated. "We now not only can compensate for the vibrations in the microscope," says Andreas Menzel. "We can even characterize fluctuations of the sample itself, even if they are much too fast to be seen with individual snapshots."

"We needed to convince ourselves that the images we produced did indeed reflect accurately the samples and their dynamics," says Pierre Thibault. "So we carried out computer simulations. They confirmed that effects of the instrument as well as of the sample itself, such as flows, switching events or mixed quantum states, can be characterized."

Microscopic view inside

The new method combines the characterization of dynamical states with high-resolution X-ray microscopy. One possible application is to analyze the changing magnetization of individual bits in magnetic storage media with high storage density. The interactions of such single magnetic bits or their thermal fluctuations, which ultimately determine the lifetime of magnetic data storage, could be visualized.

"In addition to its use in imaging," explains Pierre Thibault, "our analysis method also reveals a fundamental relationship to other disciplines: Microscopy and scientific disciplines such as quantum computing, previously regarded as independent, can benefit from each other here."

####

For more information, please click here

Contacts:
Andreas Battenberg

49-892-891-0510

Dr. Pierre Thibault

Technische Universität München

Physik-Department, Lehrstuhl für Angewandte Biophysik (E 17)
85747 Garching, Germany
Tel.: +49 89 289 14397

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reconstructing state mixtures from diffraction measurements; Pierre Thibault & Andreas Menzel Nature, 7. February 2013, DOI: 10.1038/nature11806:

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Imaging

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Laboratories

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

NIST physicists 'squeeze' light to cool microscopic drum below quantum limit January 12th, 2017

Memory Technology

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

New material with ferroelectricity and ferromagnetism may lead to better computer memory December 21st, 2016

Characterization of magnetic nanovortices simplified December 21st, 2016

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

Quantum Computing

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NIST physicists 'squeeze' light to cool microscopic drum below quantum limit January 12th, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

Discoveries

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Tools

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project