Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST's 'nanotubes on a chip' may simplify optical power measurements

The circular patch of carbon nanotubes on a pink silicon backing is one component of NISTís new cryogenic radiometer, shown with a quarter for scale. Gold coating and metal wiring has yet to be added to the chip. The radiometer will simplify and lower the cost of disseminating measurements of laser power.

Credit: Tomlin/NIST
The circular patch of carbon nanotubes on a pink silicon backing is one component of NISTís new cryogenic radiometer, shown with a quarter for scale. Gold coating and metal wiring has yet to be added to the chip. The radiometer will simplify and lower the cost of disseminating measurements of laser power.

Credit: Tomlin/NIST

Abstract:
The National Institute of Standards and Technology (NIST) has demonstrated a novel chip-scale instrument made of carbon nanotubes that may simplify absolute measurements of laser power, especially the light signals transmitted by optical fibers in telecommunications networks.

NIST's 'nanotubes on a chip' may simplify optical power measurements

Boulder, CO | Posted on January 25th, 2013

The prototype device, a miniature version of an instrument called a cryogenic radiometer, is a silicon chip topped with circular mats of carbon nanotubes standing on end.* The mini-radiometer builds on NIST's previous work using nanotubes, the world's darkest known substance, to make an ultraefficient, highly accurate optical power detector,** and advances NIST's ability to measure laser power delivered through fiber for calibration customers.***

"This is our play for leadership in laser power measurements," project leader John Lehman says. "This is arguably the coolest thing we've done with carbon nanotubes. They're not just black, but they also have the temperature properties needed to make components like electrical heaters truly multifunctional."

NIST and other national metrology institutes around the world measure laser power by tracing it to fundamental electrical units. Radiometers absorb energy from light and convert it to heat. Then the electrical power needed to cause the same temperature increase is measured. NIST researchers found that the mini-radiometer accurately measures both laser power (brought to it by an optical fiber) and the equivalent electrical power within the limitations of the imperfect experimental setup. The tests were performed at a temperature of 3.9 K, using light at the telecom wavelength of 1550 nanometers.

The tiny circular forests of tall, thin nanotubes called VANTAs ("vertically aligned nanotube arrays") have several desirable properties. Most importantly, they uniformly absorb light over a broad range of wavelengths and their electrical resistance depends on temperature. The versatile nanotubes perform three different functions in the radiometer. One VANTA mat serves as both a light absorber and an electrical heater, and a second VANTA mat serves as a thermistor (a component whose electrical resistance varies with temperature). The VANTA mats are grown on the micro-machined silicon chip, an instrument design that is easy to modify and duplicate. In this application, the individual nanotubes are about 10 nanometers in diameter and 150 micrometers long.

By contrast, ordinary cryogenic radiometers use more types of materials and are more difficult to make. They are typically hand assembled using a cavity painted with carbon as the light absorber, an electrical wire as the heater, and a semiconductor as the thermistor. Furthermore, these instruments need to be modeled and characterized extensively to adjust their sensitivity, whereas the equivalent capability in NIST's mini-radiometer is easily patterned in the silicon.

NIST plans to apply for a patent on the chip-scale radiometer. Simple changes such as improved temperature stability are expected to greatly improve device performance. Future research may also address extending the laser power range into the far infrared, and integration of the radiometer into a potential multipurpose "NIST on a chip" device.

* N.A. Tomlin, J.H. Lehman. Carbon nanotube electrical-substitution cryogenic radiometer: initial results. Optics Letters. Vol. 38, No. 2. Jan. 15, 2013.

** See 2010 NIST Tech Beat article, "Extreme Darkness: Carbon Nanotube Forest Covers NIST's Ultra-dark Detector," at www.nist.gov/pml/div686/dark_081710.cfm.

***See 2011 NIST Tech Beat article, "Prototype NIST Device Measures Absolute Optical Power in Fiber at Nanowatt Levels," at www.nist.gov/pml/div686/radiometer-122011.cfm.

####

For more information, please click here

Contacts:
Laura Ost

303-497-4880

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Laboratories

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanotubes/Buckyballs/Fullerenes

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

Discoveries

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Photonics/Optics/Lasers

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project