Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UGA researchers invent new material for warm-white LED: Discovery brings hope to the widespread use of LEDs for indoor lighting

The University of Georgia's Zhengwei Pan, center, an associate professor of physics and engineering, holds a prototype of what is thought to be the world's first single-phosphor, single-emitting-center-converted LED that emits a warm white light while the UGA College of Engineering's Feng Liu, left, and Xufan Li look on.
The University of Georgia's Zhengwei Pan, center, an associate professor of physics and engineering, holds a prototype of what is thought to be the world's first single-phosphor, single-emitting-center-converted LED that emits a warm white light while the UGA College of Engineering's Feng Liu, left, and Xufan Li look on.

Abstract:
Light emitting diodes, more commonly called LEDs, are known for their energy efficiency and durability, but the bluish, cold light of current white LEDs has precluded their widespread use for indoor lighting.

UGA researchers invent new material for warm-white LED: Discovery brings hope to the widespread use of LEDs for indoor lighting

Athens, GA | Posted on January 18th, 2013

Now, University of Georgia scientists have fabricated what is thought to be the world's first LED that emits a warm white light using a single light emitting material, or phosphor, with a single emitting center for illumination. The material is described in detail in the current edition of the Nature Publishing Group journal "Light: Science and Applications."

"Right now, white LEDs are mainly used in flashlights and in automotive lamps, but they give off a bluish, cool light that people tend to dislike, especially in indoor lighting," said senior author Zhengwei Pan, an associate professor in the department of physics in the UGA Franklin College of Arts and Sciences and in the College of Engineering. "Our material achieves a warm color temperature while at the same time giving highly accurate color rendition, which is something no single-phosphor-converted LED has ever been shown to do."

Two main variables are used to assess the quality of artificial light, Pan explained. Correlated color temperature measures the coolness or warmth of a light, and temperatures of less than 4,000 kelvins are ideal for indoor lighting. Correlated color temperatures above 5,000 kelvins, on the other hand, give off the bluish color that white LEDs are known for. The other important measure, color rendition, is the ability of a light source to replicate natural light. A value of more than 80 is ideal for indoor lighting, with lower values resulting in colors that don't seem true to life.

The material that Pan and his colleagues fabricated meets both thresholds, with a correlated color temperature of less than 4,000 kelvins and a color rendering index of 85.

Warm white light can commonly be achieved with a blue LED chip coated with light emitting materials, or phosphors, of different emitting colors to create what are called phosphor-based white LEDs, Pan said. Combining the source materials in an exact ratio can be difficult and costly, however, and the resulting color often varies because each of the source materials responds differently to temperature variations.

"The use of a single phosphor solves the problem of color stability because the color quality doesn't change with increasing temperatures," said lead author Xufan Li, a doctoral student in the College of Engineering.

To create the new phosphor, Pan and his team combine minute quantities of europium oxide with aluminum oxide, barium oxide and graphite powders. They then heat the powdered materials at 1,450 degrees Celsius (2,642 degrees Fahrenheit) in a tube furnace. The vacuum of the furnace pulls the vaporized materials onto a substrate, where they are deposited as a yellow luminescent compound. When the yellow luminescent compound is encapsulated in a bulb and illuminated by a blue LED chip, the result is a warm white light.

Although his team's results are promising, Pan emphasized that there are still hurdles to be overcome before the material is used to light homes, businesses and schools. The efficiency of the new material is much lower than that of today's bluish white LEDs. Scaling the production to an industrial scale will be challenging as well, since even slight variations in temperature and pressure in the phosphor synthesis process result in materials with different luminescent colors.

The new yellow phosphor also has a new lattice structure that has not been reported before. The researchers currently are working to discern how the ions in the compound are arranged in hopes that a better understanding of the compound at an atomic level will allow them to improve its efficiency.

"We still have more work to do," Pan said, "but the color temperature and rendition that we have achieved gives us a very good starting point."

The U.S. National Science Foundation, the National Basic Research Programs of China and the U.S. Department of Energy funded the research.

Additional authors of the paper are John D. Budai and Jane Y. Howe, Oak Ridge National Laboratory; Feng Liu and Richard S. Meltzer, University of Georgia; Jiahua Zhang and Zhanjun Gu, Chinese Academy of Sciences; Xiao-Jun Wang, Georgia Southern University; and Chengjun Sun, Argonne National Laboratory.

####

For more information, please click here

Contacts:
Zhengwei Pan

706-542-4657

Copyright © University of Georgia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Display technology/LEDs/SS Lighting/OLEDs

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app July 9th, 2014

'Nano-pixels' promise thin, flexible, high resolution displays July 9th, 2014

Projecting a Three-Dimensional Future: TAU researchers develop holography technology that could change the way we view the world July 9th, 2014

Discoveries

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Industrial

Non-Enzyme Sensor Detects Lead, Hydrogen Peroxide July 10th, 2014

New Method Introduced for Synthesis of Hydroxyapatite Nanoparticles July 5th, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

New particle-sorting method breaks speed records: Discovery could lead to new ways of detecting cancer cells or purifying contaminated water July 1st, 2014

Research partnerships

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE