Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Breakthrough for solar cell research

Abstract:
In the latest issue of Science, researchers from Lund University in Sweden have shown how nanowires could pave the way for more efficient and cheaper solar cells.

Breakthrough for solar cell research

Lund, Sweden | Posted on January 18th, 2013

"Our findings are the first to show that it really is possible to use nanowires to manufacture solar cells", says Magnus Borgström, a researcher in semiconductor physics and the principal author.

Research on solar cell nanowires is on the rise globally. Until now the unattained dream figure was ten per cent efficiency - but now Dr Borgström and his colleagues are able to report an efficiency of 13.8 per cent.

The nanowires are made of the semiconductor material indium phosphide and work like antennae that absorb sunlight and generate power. The nanowires are assembled on surfaces of one square millimetre that each house four million nanowires. A nanowire solar cell can produce an effect per active surface unit several times greater than today's silicon cells.

Nanowire solar cells have not yet made it beyond the laboratory, but the plan is that the technology could be used in large solar power plants in sunny regions such as the south-western USA, southern Spain and Africa.

The Lund researchers have now managed to identify the ideal diameter of the nanowires and how to synthesise them. "The right size is essential for the nanowires to absorb as many photons as possible. If they are just a few tenths of a nanometre too small their function is significantly impaired", explains Magnus Borgström.

The silicon solar cells that are used to supply electricity for domestic use are relatively cheap, but inefficient because they are only able to utilise a limited part of the effect of the sunlight. The reason is that one single material can only absorb part of the spectrum of the light.

Research carried out alongside that on nanowire technology therefore aims to combine different types of semiconductor material to make efficient use of a broader part of the solar spectrum. The disadvantage of this is that they become extremely expensive and can therefore only be used in niche contexts, such as on satellites and military planes.

However, this is not the case with nanowires. Because of their small dimensions, the same sort of material combinations can be created with much less effort, which offers higher efficiency at a low cost. The process is also less complicated. In the Science article, the researchers have shown that the nanowires can generate power at the same level as a thin film of the same material, even if they only cover around 10 per cent of the surface rather than 100 per cent.

The research has been carried out as part of an EU-funded project, AMON-RA, coordinated by Knut Deppert, Professor of Physics at Lund University (www.amonra.eu).

"As the coordinator of the project, I am very proud of such a great result - it has well exceeded our expectations. We will of course continue the research on nanowire solar cells and hope to achieve an even higher level of efficiency than the 13.8 per cent that we have now reported", says Knut Deppert.

Magnus Borgström is the supervisor of a doctoral student, Jesper Wallentin, who is co-author of the Science article and who will be defending his thesis on Friday, 18 January (the same day as the article is published online in Science express). It may therefore be difficult to reach Dr Borgström on Friday.

####

For more information, please click here

Contacts:
Magnus Borgström

46-462-221-494
+46 734 21 60 75

Martin Magnusson, PhD
SolVoltaics
+46 705 74 03 50

Copyright © Lund University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the article in Science here:

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Nanoelectronics

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

GLOBALFOUNDRIES on Track to Deliver Leading-Performance 7nm FinFET Technology: New 7LP technology offers 40 percent performance boost over 14nm FinFET June 13th, 2017

Seeing the invisible with a graphene-CMOS integrated device June 6th, 2017

IBM Research Alliance Builds New Transistor for 5nm Technology: Less than two years since announcing a 7nm test chip, scientists have achieved another breakthrough June 5th, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Military

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Energy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Aerospace/Space

National Space Society and Cornell University's Cislunar Explorers Celebrate The Team's First Place Victory in NASA's Cube Quest Challenge June 15th, 2017

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Solar/Photovoltaic

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

In a project funded by the Austrian Science Fund FWF, the physicist Serdar Sarıçiftçi investigates possible uses in electronics of the semiconductor properties of indigo pigment June 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project