Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Breakthrough for solar cell research

Abstract:
In the latest issue of Science, researchers from Lund University in Sweden have shown how nanowires could pave the way for more efficient and cheaper solar cells.

Breakthrough for solar cell research

Lund, Sweden | Posted on January 18th, 2013

"Our findings are the first to show that it really is possible to use nanowires to manufacture solar cells", says Magnus Borgström, a researcher in semiconductor physics and the principal author.

Research on solar cell nanowires is on the rise globally. Until now the unattained dream figure was ten per cent efficiency - but now Dr Borgström and his colleagues are able to report an efficiency of 13.8 per cent.

The nanowires are made of the semiconductor material indium phosphide and work like antennae that absorb sunlight and generate power. The nanowires are assembled on surfaces of one square millimetre that each house four million nanowires. A nanowire solar cell can produce an effect per active surface unit several times greater than today's silicon cells.

Nanowire solar cells have not yet made it beyond the laboratory, but the plan is that the technology could be used in large solar power plants in sunny regions such as the south-western USA, southern Spain and Africa.

The Lund researchers have now managed to identify the ideal diameter of the nanowires and how to synthesise them. "The right size is essential for the nanowires to absorb as many photons as possible. If they are just a few tenths of a nanometre too small their function is significantly impaired", explains Magnus Borgström.

The silicon solar cells that are used to supply electricity for domestic use are relatively cheap, but inefficient because they are only able to utilise a limited part of the effect of the sunlight. The reason is that one single material can only absorb part of the spectrum of the light.

Research carried out alongside that on nanowire technology therefore aims to combine different types of semiconductor material to make efficient use of a broader part of the solar spectrum. The disadvantage of this is that they become extremely expensive and can therefore only be used in niche contexts, such as on satellites and military planes.

However, this is not the case with nanowires. Because of their small dimensions, the same sort of material combinations can be created with much less effort, which offers higher efficiency at a low cost. The process is also less complicated. In the Science article, the researchers have shown that the nanowires can generate power at the same level as a thin film of the same material, even if they only cover around 10 per cent of the surface rather than 100 per cent.

The research has been carried out as part of an EU-funded project, AMON-RA, coordinated by Knut Deppert, Professor of Physics at Lund University (www.amonra.eu).

"As the coordinator of the project, I am very proud of such a great result - it has well exceeded our expectations. We will of course continue the research on nanowire solar cells and hope to achieve an even higher level of efficiency than the 13.8 per cent that we have now reported", says Knut Deppert.

Magnus Borgström is the supervisor of a doctoral student, Jesper Wallentin, who is co-author of the Science article and who will be defending his thesis on Friday, 18 January (the same day as the article is published online in Science express). It may therefore be difficult to reach Dr Borgström on Friday.

####

For more information, please click here

Contacts:
Magnus Borgström

46-462-221-494
+46 734 21 60 75

Martin Magnusson, PhD
SolVoltaics
+46 705 74 03 50

Copyright © Lund University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the article in Science here:

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Nanoelectronics

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Discoveries

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Military

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NanoTechnology for Defense (NT4D) October 22nd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Energy

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New evidence for an exotic, predicted superconducting state October 27th, 2014

Aerospace/Space

New evidence for an exotic, predicted superconducting state October 27th, 2014

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Solar/Photovoltaic

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Dyesol Signs Letter of Intent with Tata Steel October 13th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE