Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Counting the twists in a helical light beam: New device could contribute to a major increase in the rate of future optical communications

This illustration (not to scale) simulates the process by which an incoming complex wave can be identified and transmitted to a photodetector. (Image courtesy of Patrice Genevet.)
This illustration (not to scale) simulates the process by which an incoming complex wave can be identified and transmitted to a photodetector.

(Image courtesy of Patrice Genevet.)

Abstract:
At a time when communication networks are scrambling for ways to transmit more data over limited bandwidth, a type of twisted light wave is gaining new attention. Called an optical vortex or vortex beam, this complex beam resembles a corkscrew, with waves that rotate as they travel.

Counting the twists in a helical light beam: New device could contribute to a major increase in the rate of future optical communications

Cambridge, MA | Posted on January 8th, 2013

Now, applied physicists at the Harvard School of Engineering and Applied Sciences (SEAS) have created a new device that enables a conventional optical detector (which would normally only measure the light's intensity) to pick up on that rotation.

The device, described in the journal Nature Communications, has the potential to add capacity to future optical communication networks.

"Sophisticated optical detectors for vortex beams have been developed before, but they have always been complex, expensive, and bulky," says principal investigator Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at SEAS.

In contrast, the new device simply adds a metallic pattern to the window of a commercially available, low-cost photodetector. Each pattern is designed to couple with a particular type of incoming vortex beam by matching its orbital angular momentum—the number of twists per wavelength in an optical vortex.

Sensitive to the beam's "twistiness," this new detector can effectively distinguish between different types of vortex beams. Existing communications systems maximize bandwidth by sending many messages simultaneously, each a fraction of a wavelength apart; this is known as wavelength division multiplexing. Vortex beams can add an additional level of multiplexing and therefore should expand the capacity of these systems.

"In recent years, researchers have come to realize that there is a limit to the information transfer rate of about 100 terabits per second per fiber for communication systems that use wavelength division multiplexing to increase the capacity of single-mode optical fibers," explains Capasso. "In the future, this capacity could be greatly increased by using vortex beams transmitted on special multicore or multimode fibers. For a transmission system based on this 'spatial division multiplexing' to provide the extra capacity, special detectors capable of sorting out the type of vortex transmitted will be essential."

The new detector is able to tell one type of vortex beam from another due to its precise nanoscale patterning. When a vortex beam with the correct number of coils per wavelength strikes the gold plating on the detector's surface, it encounters a holographic interference pattern that has been etched into the gold. This nanoscale patterning allows the light to excite the metal's electrons in exactly the right way to produce a focused electromagnetic wave, known as a surface plasmon. The light component of this wave then shines through a series of perforations in the gold, and lands on the photodetector below.

If the incoming light doesn't match the interference pattern, the plasmon beam fails to focus or converge and is blocked from reaching the detector.

Capasso's research team has demonstrated this process using vortex beams with orbital angular momentum of −1, 0, and 1.

"In principle, an array of many different couplers and detectors could be set up to read data transmitted on a very large number of channels," says lead author Patrice Genevet, a research associate in applied physics at SEAS. "With this approach, we transform detectors that were originally only sensitive to the intensity of light, so that they monitor the twist of the wavefronts. More than just detecting a specific twisted beam, our detectors gather additional information on the phase of the light beam."

The device's ability to detect and distinguish vortex beams is important for optical communications, but its capabilities may extend beyond what has been demonstrated.

"Using the same holographic approach, the same device patterned in different ways should be able to couple any type of free-space light beam into any type of surface wave," says Genevet.

Coauthors on this work included Jiao Lin, a former postdoctoral fellow in Capasso's lab (now at the Singapore Institute of Manufacturing Technology), and Harvard graduate student Mikhail A. Kats.

The research was supported by the U.S. Air Force Office of Scientific Research, the U.S. Intelligence Advanced Research Projects Agency, and through research fellowships from the Agency for Science, Technology, and Research in Singapore and the U.S. National Science Foundation (NSF). The researchers also benefited from facilities at Harvard's Center for Nanoscale Systems, a member of the NSF-supported National Nanotechnology Infrastructure Network.

####

For more information, please click here

Contacts:
Caroline Perry
(617) 496-1351

Copyright © Harvard's School of Engineering and Applied Sciences (SEAS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Optical computing/ Photonic computing

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Discoveries

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Tools

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo – Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Military

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

Photonics/Optics/Lasers

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic