Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Imec paves the way for intelligent item-level RFID tagging to replace bar codes: World-first UHF IGZO Schottky diode is breakthrough achievement towards low-cost passive thin-film RFID tags

Imec’s world-first ultrahigh frequency IGZO Schottky diode
Imec’s world-first ultrahigh frequency IGZO Schottky diode

Abstract:
At this week's IEEE International Electron Devices Meeting (IEDM 2012), imec presented the world-first ultra-high frequency Schottky diode based on amorphous IGZO (Indium-Gallium-Zinc Oxide) as semiconductor. This breakthrough achievement will enable the development of thin-film passive UHF (ultra-high frequency) RFID (radiofrequency ID) tags to replace item-level bar codes.

Imec paves the way for intelligent item-level RFID tagging to replace bar codes: World-first UHF IGZO Schottky diode is breakthrough achievement towards low-cost passive thin-film RFID tags

San Francisco, CA | Posted on December 11th, 2012

Passive intelligent item-level RFID tags are ideal for the retail sector and enable more accurate tracking of individual products (i.e. expiration, misplacement, theft, etc). Unlike bar codes which require one-per-one scanning by the reader, UHF RFID-tags could be scanned all together. However, today's UHF silicon-based RFID technology is too expensive for mass-market retail applications. Imec's research aims to dramatically reduce the cost of the entire RFID by combining ultra high frequency (UHF) operation with a thin-film-based technology. UHF RFID tags have a long reading range (5 to 10 meters) and employ small, printed, low-cost antennas. Compared to Silicon, IGZO based technology has the potential to result in a low-cost solution, since IGZO thin film active devices are fabricated using a cheaper, low-temperature process. This allows the development of chips direct on a plastic foils, such as on the product package. However, IGZO has intrinsically a lower performance than conventional Silicon and other conventional crystalline semiconductors. Therefore, it is a challenge to fabricate ultra-fast active devices based on IGZO.



The diode is the fundamental block in the power supply generator of passive, i.e., battery-less tags. It rectifies the carrier wave captured by the antenna and feeds the power supply on the tag. IGZO is an amorphous semiconductor with gap states that impede the formation of a stable Schottky barrier, irrespective of the metal used. To achieve a stable Schottky barrier, imec developed specific plasma and anneal treatments that alter the chemistry of the Schottky interface. The resulting IGZO Schottky diodes have a rectification ratio of up to nine orders of magnitude (at +1V and -1V), current densities of up to 800A/cm2 at forward bias of 1V, and a cut-off frequency of 1.8 GHz. When incorporated in a single stage rectifier, the cut-off frequency is 1.1GHz. The rectifiers are demonstrated to operate at ultra-high frequency (868MHz) with low losses.

This achievement, together with imec's recent demonstration of a functioning bidirectional thin-film RFID circuit (at ISSCC2012), are critical research development steps towards the realization of intelligent item-level tagging with broad implementation opportunities in the retail sector. The research on thin-film UHF RFID technology is supported by the EU FP7-ICT-247798 project ORICLA. Project partners include the project coordinator imec (Belgium), Holst Centre - TNO (The Netherlands), Evonik Industries AG (Germany), and PolyIC (Germany).

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of close to 2,000 people includes more than 600 industrial residents and guest researchers. In 2011, imec's revenue (P&L) was about 300 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

For more information, please click here

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Production of Copper Cobaltite Nanocomposites with Photocatalytic Properties in Iran May 27th, 2015

Thin films

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Science and Technology of Advanced Materials (STAM): Reported successes and failures aid hot pursuit of superconductivity May 15th, 2015

Chip Technology

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Announcements

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Production of Copper Cobaltite Nanocomposites with Photocatalytic Properties in Iran May 27th, 2015

Events/Classes

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Directa Plus in Barcelona to present the innovative project GEnIuS for oil spills clean-up activities: The company has created a graphene-based product for the remediation of water contaminated by oil and hydrocarbons May 21st, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

RFID

Harvesting energy from electromagnetic waves: In the future, clean alternatives such as harvesting energy from electromagnetic waves may help ease the world's energy shortage April 15th, 2015

LogiTag’s Active RTLS Solution Selected by Hebrew University Nano Labs to Safeguards and Monitor Students and Staff May 13th, 2014

Leti and Partners in SOCRATE Project Focusing on Miniature Antennas with Super-Directivity Radiation Properties: Improving Directivity of Small Antennas Would Enhance Spectral Efficiency, Reduce Environmental Impact and Increase Functionality July 15th, 2013

IDTechEx launches online Market Intelligence Portal May 23rd, 2013

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project