Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Seeing the Light? Making Sense of Disorder in Polymer Opals

Abstract:
The iridescent colours of natural opals have fascinated people for thousands of years. It is interesting, however, that the colours we see are generated only by diffraction of light between the ordered planes of atoms which make up the structures. In order to reproduce this effect in artificial systems and to allow such opal characteristics to be applied to, for example, flexible materials such as clothing or packaging, research into synthetic opals has gained momentum in the last decades.

Seeing the Light? Making Sense of Disorder in Polymer Opals

Germany | Posted on December 7th, 2012

The diffraction of light from opal materials is very sensitive to the angle of reflection from the atomic planes within these materials, and variations in these angles can occur as a result of defects within the crystal structure. In order to fully characterize and understand the optical properties of synthesized opals it is important to be able to completely measure this angle-dependence; however, previously a technique to do this has been lacking.

Now, Andrew I. Haines and Jeremy J. Baumberg et al. have described a new way of measuring the three-dimensional angular scattering of light from nanostructures (hyperspectral goniometry technique), and use it to show that scattering from polymer opals, composed of ordered polymer nanospheres, is anisotropic. Specifically, light is scattered more broadly in the direction perpendicular to sample processing. They find that this effect is the result of chain defects, i.e., the presence of extra lines of polymer nanospheres, in the polymer-opal films tested; and that the enhanced colour observed when the structures are more highly ordered is due to an increased effective refractive-index contrast.

Furthermore, by doping these synthetic opal structures with light-absorbing carbon nanoparticles they discovered the colour saturation could be greatly improved as the nanoparticles absorb multiply scattered light so lower the background scattering without affecting the resonant scattering.

This research was reported in Advanced Optical Materials, a new section in Advanced Materials dedicated to breakthrough discoveries and fundamental research in photonics, plasmonics, metamaterials, and more, covering all aspects of light-matter interactions. Advanced Optical Materials will start as an independent journal in 2013. More information can be found on www.advopticalmat.de

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Discoveries

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Announcements

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Textiles/Clothing

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

Weird, water-oozing material could help quench thirst: Nanorods' behavior first theorized 20 years ago, but not seen until now June 13th, 2016

Photonics/Optics/Lasers

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

MIPT physicists predict the existence of unusual optical composites March 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project