Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Seeing the Light? Making Sense of Disorder in Polymer Opals

Abstract:
The iridescent colours of natural opals have fascinated people for thousands of years. It is interesting, however, that the colours we see are generated only by diffraction of light between the ordered planes of atoms which make up the structures. In order to reproduce this effect in artificial systems and to allow such opal characteristics to be applied to, for example, flexible materials such as clothing or packaging, research into synthetic opals has gained momentum in the last decades.

Seeing the Light? Making Sense of Disorder in Polymer Opals

Germany | Posted on December 7th, 2012

The diffraction of light from opal materials is very sensitive to the angle of reflection from the atomic planes within these materials, and variations in these angles can occur as a result of defects within the crystal structure. In order to fully characterize and understand the optical properties of synthesized opals it is important to be able to completely measure this angle-dependence; however, previously a technique to do this has been lacking.

Now, Andrew I. Haines and Jeremy J. Baumberg et al. have described a new way of measuring the three-dimensional angular scattering of light from nanostructures (hyperspectral goniometry technique), and use it to show that scattering from polymer opals, composed of ordered polymer nanospheres, is anisotropic. Specifically, light is scattered more broadly in the direction perpendicular to sample processing. They find that this effect is the result of chain defects, i.e., the presence of extra lines of polymer nanospheres, in the polymer-opal films tested; and that the enhanced colour observed when the structures are more highly ordered is due to an increased effective refractive-index contrast.

Furthermore, by doping these synthetic opal structures with light-absorbing carbon nanoparticles they discovered the colour saturation could be greatly improved as the nanoparticles absorb multiply scattered light so lower the background scattering without affecting the resonant scattering.

This research was reported in Advanced Optical Materials, a new section in Advanced Materials dedicated to breakthrough discoveries and fundamental research in photonics, plasmonics, metamaterials, and more, covering all aspects of light-matter interactions. Advanced Optical Materials will start as an independent journal in 2013. More information can be found on www.advopticalmat.de

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Discoveries

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Announcements

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Textiles/Clothing

Thinnest feasible membrane produced April 17th, 2014

Making clothes from sugar: IBN researchers have found a green and efficient method to produce nylon from sugar April 1st, 2014

FibeRio® to Present “Polyester Nanofibers for Oil and Fuel Filtration" at AFS Spring 2014 Conference March 19th, 2014

Fabrics Resistant to Growth of Microbes Produced in Iran March 17th, 2014

Photonics/Optics/Lasers

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE