Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > PTB measurements for the next computer chip generation: Cooperation between Carl Zeiss and PTB on EUV lithography extended

Beamlines and instrumentation at the Metrology Light Source (MLS). (EUV beamline: #3; set-up for the calibration of radiation sources: #2b; undulator beamline: #1d; infrared beamline: #6)(Image: PTB)
Beamlines and instrumentation at the Metrology Light Source (MLS). (EUV beamline: #3; set-up for the calibration of radiation sources: #2b; undulator beamline: #1d; infrared beamline: #6)

(Image: PTB)

Abstract:
European companies are the world leaders in the development of EUV lithography for the manufacture of semiconductor chips with even shorter wavelengths than up to now, i.e. with 13.5 nanometres in the spectral range of the so-called "Extreme UV (EUV)". The volume production of lens systems and wafer scanners of EU lithography (EUVL) is planned for 2014. In this development, the Physikalisch-Technische Bundesanstalt (PTB) is at the fore. With a new EUV beamline at PTB's own electron storage ring - the Metrology Light Source (MLS) in Berlin-Adlershof - it will characterize EUVL lens systems for this purpose. The cooperation with Carl Zeiss SMT GmbH, which has been running since 1998, has now been extended for another four years. PTB measurements will help to give proof of the quality of the Zeiss lens systems in the so-called "steppers" (lithography machines) of the Dutch company ASML, the global market leader in this field.

PTB measurements for the next computer chip generation: Cooperation between Carl Zeiss and PTB on EUV lithography extended

Braunschweig , Germany | Posted on December 2nd, 2012

The combination is unique worldwide: although there are a number of electron storage rings, and although a national metrology institute exists in almost every country as the highest authority in the field of measurements, only the Physikalisch-Technische Bundesanstalt has its own modern electron storage ring - the Metrology Light Source - and the measurement arrangements required for the high-precision characterization of EUVL lens systems. The MLS has been operated since 2008; it furnishes synchrotron radiation from the terahertz range up to the EUV range and has clearly extended PTB's measurement capabilities at the nearby electron storage ring BESSY II, where it uses X-rays on a large scale for the various metrological tasks.

The new EUV beamline is particularly suited for the investigation of photodetectors and structured optical elements and has - after the commissioning phase - been increasingly used since the beginning of this year for measurements within the scope of research cooperations, in particular for EUVL. "Our greatest strength - which is very well received by the cooperation partners - consists in the so-called "At-wavelength measurements". We characterize the lens systems at the EUVL working wavelength - and not only with visible light. Our measurements therefore directly describe the behaviour of lens systems in the production machines", explains Frank Scholze, head of the PTB working group.

The great demand from industry had induced PTB to develop its measurement capabilities at the two storage rings even further. In mid-2013, the large EUV reflectometer of BESSY II is to move to the MLS. In its place, an EUV scatterometer/ellipsometer will be installed which has been particularly suited for scatter experiments. Then, at the latest, a total of approximately 6000 hours of synchrotron radiation measuring time per year will be available to PTB for EUV metrology.

Also in other areas, PTB has clearly extended the field of "metrology with synchrotron radiation" by the commissioning of new beamlines at the MLS. Compared to its predecessor at BESSY II, a new measuring set-up for the calibration of radiation sources now also allows measurements to be carried out at wavelengths below 40 nm. Calibrated radiation sources in the vacuum-UV (VUV) and the EUV are, for example, of great importance for the characterization of space telescopes for solar and atmospheric research. In addition, the new undulator beamline provides monochromatized intensive and profoundly polarized radiation from the IR range up to the EUV range. At present, the first quantitative investigations of surfaces are being carried out by means of UV/VUV ellipsometry and electron spectroscopy together with partners from the research site Adlershof. Furthermore, a new near-field microscope has been put into operation at the infrared beamline of the MLS.

####

About Physikalisch-Technische Bundesanstalt (PTB)
PTB is the German national metrology institute providing scientific and technical services. PTB measures with the highest accuracy and reliability – metrology as the core competence

For more information, please click here

Contacts:
Dr. Frank Scholze
PTB Working Group 7.12
EUV Radiometry
Phone: +49(30) 3481-7120

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Imaging

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Laboratories

Working under pressure: Diamond micro-anvils with huge pressures will create new materials October 19th, 2016

Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge October 15th, 2016

Scientists Find Static "Stripes" of Electrical Charge in Copper-Oxide Superconductor: Fixed arrangement of charges coexists with material's ability to conduct electricity without resistance October 14th, 2016

Tomoyasu Mani Wins 2016 Blavatnik Regional Award for Young Scientists: Award recognizes his work at Brookhaven Lab to understand the physical processes occurring in organic materials used to harness solar energy October 13th, 2016

Chip Technology

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tools

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

Alliances/Trade associations/Partnerships/Distributorships

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Arrowhead and Spring Bank Announce Clinical Collaboration for ARC-520 and SB 9200 in Chronic Hepatitis B October 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project