Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Center gets small to study nanoparticles in environment

Hamers
Hamers

Abstract:
Our understanding of the creation and use of nanomaterials is growing, but so much about our long-term relationship with their tiny component particles remains little understood.

Center gets small to study nanoparticles in environment

Madison, WI | Posted on October 15th, 2012

"We know that nanoparticles can be toxic. We know that they can get into living things," says Robert Hamers, a University of Wisconsin-Madison chemistry professor and director of the new Center for Sustainable Nanotechnology. "But in some sense we need to shrink the questions of environmental safety down to the way nanoparticles interact with the individual atoms and molecules of the organisms they encounter."

In partnership with researchers from four Midwestern universities and a national laboratory, Hamers hopes to scale the outer walls of living things — their cell membranes — and watch nanoparticles of various compositions, sizes and shapes knock on the door.

The vantage point is a shift from typical nanotechnology toxicology research.

"A lot of studies have been conducted with whole organisms examining rather severe effects — like death — that only appear at high concentrations," says Joel Pedersen, an environmental chemistry professor in UW-Madison's Soil Science Department. "Some of the more subtle effects are only beginning to be examined."

Pedersen, whose research includes creating layers of molecules that function as a cell membrane, will — with chemists Franz Geiger of Northwestern University and Christy Haynes of the University of Minnesota — provide testing grounds for nanoparticles created by labs run by Hamers and Catherine Murphy of the University of Illinois.

"We will also work with two freshwater organisms, the water flea Daphnia and a bacterium called Shewanella oneidensis, to watch their genomic response to nanoparticles. Their genetic readouts after exposure will give us more clues to which molecules the nanoparticles are interacting with once they are inside the organisms," says Pedersen, who has conducted studies of nanoparticle uptake in zebra fish. University of Wisconsin-Milwaukee ecologist Rebecca Klaper is developing genetic markers to track changes in aquatic organisms exposed to water contaminants like nanoparticles.

At a National Science Foundation-sponsored workshop he organized last year, Hamers and other leaders in the field laid out some of the obstacles in the way of a deeper understanding of nanotechnology's environmental footprint.

"One of the things that came up repeatedly was the need for more analytical tools that can tell us what our nanoparticles are doing inside an organism or in any environment, really," Hamers says.

First among those tools may be a way to see on the nanoscale — particles less than 10 nanometers (each a billionth of a meter) long — when that length is just a fraction of the wavelength of light.

"There are tricks you can play to get instruments down to about 10 nanometers of spatial resolution," Hamers says. "Galya Orr from Pacific Northwest National Laboratory is a real expert in this state-of-the-art sub-diffraction microscopy. We'll be exploring some of those to see how we can actually produce images of what a 10-nanometer or 5-nanometer nanoparticle is doing inside a Shewanella cell or a Daphnia."

The group will start with relatively stable diamond and gold nanoparticles, with hopes to move into monitoring slipperier reactive nanoparticles should their three-year, $1.75 million Phase I Center for Chemical Innovation grant transition to a Phase II center with greater funding.

"One of the key limitations in understanding what happens to nanoparticles in the environment and organisms is that the nanoparticles are not static. They're dynamic," Hamers says. "It gets very difficult to track what's going on if the particles are changing as you're going. We will use very small, ultra-stable nanoparticles of diamond and gold, and vary the exterior surfaces with molecular groups that will control the interactions and enable us to follow what happens when they are interacting with organisms in a controlled environment."

The Center for Sustainable Nanotechnology represents a collaborative environment that NSF is encouraging through competitive, tiered processes like the Center for Chemical Innovation grants.

"Understanding how engineered nanoparticles interact with the environment and with living systems is a complex, challenging and important chemical question," says Katharine Covert, CCI program director in NSF's Division of Chemistry. "Hamers has assembled a team of talented scientists willing to tackle this grand challenge."

And Hamers has brought them together to do more than just pass materials and technology back and forth.

"I can't just make nanoparticles and throw them over a fence to somebody. That just doesn't work. It's important for this to be a real collaboration," he says. "One of the unique features of the center is that it provides new modes of training for graduate students, and begins to draw a very strong group of scientists together on an issue of real importance to us. We're ideally suited near the Great Lakes to be studying the implications for freshwater organisms."

####

For more information, please click here

Contacts:
Chris Barncard

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Openings/New facilities/Groundbreaking/Expansion

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

GLOBALFOUNDRIES Expands to Meet Worldwide Customer Demand: Company invests for capacity growth in the United States, Germany, China and Singapore February 10th, 2017

Portable superconductivity systems for small motors: Cambridge University lab achieves a breakthrough for portable superconductivity systems that are applicable for small motors, health care and other uses February 8th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Announcements

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project