Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Neutron Crystallography Aids Drug Design Precisely tailored pharmaceuticals could reduce medical side effects

The Protein Crystallography Station at the Los Alamos Neutron Science Center, where groundbreaking work in new drug-design methods is underway using neutron diffraction techniques. Photo credit: Los Alamos National Laboratory.
The Protein Crystallography Station at the Los Alamos Neutron Science Center, where groundbreaking work in new drug-design methods is underway using neutron diffraction techniques.

Photo credit: Los Alamos National Laboratory.

Abstract:
Researchers at Los Alamos National Laboratory have used neutron crystallography for the first time to determine the structure of a clinical drug in complex with its human target enzyme. Seeing the detailed structure of the bonded components provides insights into developing more effective drugs with fewer side effects for patients.

Neutron Crystallography Aids Drug Design Precisely tailored pharmaceuticals could reduce medical side effects

Los Alamos, NM | Posted on October 9th, 2012

The atomic details of drug binding have been largely unknown due to the lack of key information on specific hydrogen atom positions and hydrogen bonding between the drug and its target enzyme. In this research, scientists used the drug acetazolamide (AZM) -- a sulfonamide drug that has been used for decades to treat a variety of diseases such as glaucoma, altitude sickness, and epilepsy. But when the drug binds with the wrong form (called an isoform) of the target enzyme for the disease, it can produce unpleasant side effects in patients (so called "off-target" drug binding).

Enter neutron crystallography - the use of neutron scattering to paint a picture of these bonds.

By providing precise information on hydrogen bonding between target enzymes and the treatment drugs (carbon anhydrase II targeted by AZM in this study), the research enables improvements in targeted binding with fewer side effects. Neutron crystallography offers a new and unique insight into these details, providing imagery of the exact structures involved.

Scientists from Los Alamos National Laboratory collected the data at the Protein Crystallography Station using neutrons from the accelerator at the Los Alamos Neutron Science Center, LANSCE. The Journal of the American Chemical Society published the research, "Neutron Diffraction of Acetazolamide-Bound Human Carbonic Anhydrase II Reveals Atomic Details of Drug Binding" available online at pubs.acs.org/doi/abs/10.1021/ja3068098

Researchers include Zoë Fisher and Mary Jo Waltman of the Los Alamos Bioenergy and Environmental Science group, Andrey Kovalevsky formerly of Los Alamos and currently at Oak Ridge National Laboratory, and Robert McKenna, David Silverman and Mayank Aggarwal of the University of Florida.

The U.S. Department of Energy Office of Science funds the Protein Crystallography Station at LANSCE. Zoë Fisher received partial support through a Laboratory Directed Research and Development (LDRD) Early Career Award.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Nancy Ambrosiano
505.667.0471

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Neutron Diffraction of Acetazolamide-Bound Human Carbonic Anhydrase II Reveals Atomic Details of Drug Binding”

Related News Press

News and information

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Imaging

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Laboratories

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nanomedicine

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Discoveries

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Announcements

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Tools

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic