Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Neutron Crystallography Aids Drug Design Precisely tailored pharmaceuticals could reduce medical side effects

The Protein Crystallography Station at the Los Alamos Neutron Science Center, where groundbreaking work in new drug-design methods is underway using neutron diffraction techniques. Photo credit: Los Alamos National Laboratory.
The Protein Crystallography Station at the Los Alamos Neutron Science Center, where groundbreaking work in new drug-design methods is underway using neutron diffraction techniques.

Photo credit: Los Alamos National Laboratory.

Abstract:
Researchers at Los Alamos National Laboratory have used neutron crystallography for the first time to determine the structure of a clinical drug in complex with its human target enzyme. Seeing the detailed structure of the bonded components provides insights into developing more effective drugs with fewer side effects for patients.

Neutron Crystallography Aids Drug Design Precisely tailored pharmaceuticals could reduce medical side effects

Los Alamos, NM | Posted on October 9th, 2012

The atomic details of drug binding have been largely unknown due to the lack of key information on specific hydrogen atom positions and hydrogen bonding between the drug and its target enzyme. In this research, scientists used the drug acetazolamide (AZM) -- a sulfonamide drug that has been used for decades to treat a variety of diseases such as glaucoma, altitude sickness, and epilepsy. But when the drug binds with the wrong form (called an isoform) of the target enzyme for the disease, it can produce unpleasant side effects in patients (so called "off-target" drug binding).

Enter neutron crystallography - the use of neutron scattering to paint a picture of these bonds.

By providing precise information on hydrogen bonding between target enzymes and the treatment drugs (carbon anhydrase II targeted by AZM in this study), the research enables improvements in targeted binding with fewer side effects. Neutron crystallography offers a new and unique insight into these details, providing imagery of the exact structures involved.

Scientists from Los Alamos National Laboratory collected the data at the Protein Crystallography Station using neutrons from the accelerator at the Los Alamos Neutron Science Center, LANSCE. The Journal of the American Chemical Society published the research, "Neutron Diffraction of Acetazolamide-Bound Human Carbonic Anhydrase II Reveals Atomic Details of Drug Binding" available online at pubs.acs.org/doi/abs/10.1021/ja3068098

Researchers include ZoŽ Fisher and Mary Jo Waltman of the Los Alamos Bioenergy and Environmental Science group, Andrey Kovalevsky formerly of Los Alamos and currently at Oak Ridge National Laboratory, and Robert McKenna, David Silverman and Mayank Aggarwal of the University of Florida.

The U.S. Department of Energy Office of Science funds the Protein Crystallography Station at LANSCE. ZoŽ Fisher received partial support through a Laboratory Directed Research and Development (LDRD) Early Career Award.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energyís National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Nancy Ambrosiano
505.667.0471

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ďNeutron Diffraction of Acetazolamide-Bound Human Carbonic Anhydrase II Reveals Atomic Details of Drug BindingĒ

Related News Press

Imaging

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

News and information

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Laboratories

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Discoveries

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Announcements

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Tools

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project