Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Odorant shape and vibration likely lead to olfaction satisfaction

Photo by L. Brian Stauffer

University of Illinois physics professor Klaus Schulten and his colleagues found that the vibration of an odorant molecule’s chemical bonds contributes to the perception of smell.
Photo by L. Brian Stauffer

University of Illinois physics professor Klaus Schulten and his colleagues found that the vibration of an odorant molecule’s chemical bonds contributes to the perception of smell.

Abstract:
A new study of the sense of smell lends support to a controversial theory of olfaction: Our noses can distinguish both the shape and the vibrational characteristics of odorant molecules.



VIDEO: Postdoctoral researcher Ilia Solov'yov explains how the shape and molecular vibration of an odorant triggers electron transfer in an odorant receptor.

Odorant shape and vibration likely lead to olfaction satisfaction

Champaign, IL | Posted on September 19th, 2012

The study, in the journal Physical Chemistry Chemical Physics, demonstrates the feasibility of the theory - first proposed decades ago - that the vibration of an odorant molecule's chemical bonds - the wagging, stretching and rocking of the links between atoms - contributes to our ability to distinguish one smelly thing from another.

"The theory goes that when the right odorant binds to its receptor, the odorant's molecular vibration allows electrons to transfer from one part of the receptor to another," said University of Illinois physics and Beckman Institute professor Klaus Schulten, who conducted the analysis with postdoctoral researcher Ilia Solov'yov and graduate student Po-Yao Chang. "This electron transfer appears to fine-tune the signal the receptor receives."

(Watch a video about the research.)

Many who study olfaction maintain that odorant receptors recognize only an odorant's shape and surface characteristics. They dismiss the idea that molecular vibration has anything to do with it, Schulten said. Likewise, some proponents of the vibrational theory think that molecular vibration only, and not shape, guides the sense of smell. Schulten and his colleagues belong to a "third camp" that sees evidence for both, he said.

The vibrational theory of olfaction is supported by studies showing that insects, humans and other animals can tell the difference between two versions of the same odorant molecule - a normal one and an identical one with deuterium atoms substituted for each of the hydrogens. The deuterated and normal versions of the odorant have the same shape and surface characteristics, and yet humans and other animals can smell the difference, Schulten said.

"The question then is of course, for scientists, how does this happen?" he said.

To answer this question, Schulten turned to the work of a former colleague at Illinois, Rudolph Marcus, a chemist (now at the California Institute of Technology) who received the Nobel Prize in Chemistry in 1992 for his insights into electron transfer, one of the most basic forms of a chemical reaction.

"Marcus realized that when electrons are being exchanged between molecules the process is coupled to the vibrations of the molecules involved," Schulten said. Marcus focused primarily on the low-frequency "rumblings" that occur as a result of molecular vibration in large molecules, Schulten said.

Odorant molecules are generally quite small, however, with a lot of high-frequency, high-energy vibrations, Schulten said. Some scientists have theorized that these high-frequency vibrations can, when an odorant binds to the right receptor, enhance the likelihood that an electron will transfer from one part of the receptor to another, sending an electrical signal that contributes to the detection of that odor.

Prior to the new study, no one had analyzed the energetics of the system to see if the vibrations of the odorant molecules - in the context of all the background vibrations that are part of the system - could actually promote electron transfer within the receptor. Schulten and his colleagues are the first to conduct such an analysis, he said.

"You can actually carry out quantum chemical calculations that determine very precisely the vibration of the molecule as well as the ability to couple it to electron transfer," Schulten said. The calculations indicate that such an interaction is energetically feasible, he said.

Odorant receptors are embedded in membranes and so are more difficult to study than other proteins. But previous research indicates that some receptors are metalloproteins, and "the metals in the proteins are predesigned to transfer electrons," Schulten said. "We also see that there are other amino acid side groups that can accept an electron, so the electron can be transferred through the protein."

Like others before them, Schulten and his colleagues suggest that the odorant receptor contains both an electron donor and an electron acceptor, but that electron transfer occurs only when a specific odorant is bound to the receptor. The new calculations offer the first quantitative evidence that the odorant can in fact promote electron transfer.

Those who suggested that molecular vibration played a role in odorant recognition in previous studies "didn't know about Marcus' theory and they didn't do quantum chemical calculations," Schulten said. "They argued very much on principle (that it was possible). So we are saying now, yes, it is really possible even when you do the most complete and reliable calculations."

####

For more information, please click here

Contacts:
Diana Yates
Life Sciences Editor
217-333-5802


Klaus Schulten
217-244-1604

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Vibrationally Assisted Electron Transfer Mechanism of Olfaction: Myth or Reality,” is available online or from the U. of I. News Bureau:

Related News Press

News and information

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Chemistry

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

The gold standard December 9th, 2014

Simple, Biocompatible Method Developed for Production of Cerium Oxide Nanoparticles December 9th, 2014

Physics

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Videos/Movies

“Line dancing bacteria win the 2014 Dolomite and Lab on a Chip Video Competition” December 16th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE