Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Invisible QR codes tackle counterfeit bank notes

Abstract:
An invisible quick response (QR) code has been created by researchers in an attempt to increase security on printed documents and reduce the possibility of counterfeiting, a problem which costs governments and private industries billions of pounds each year.



The development process can be viewed in this video.

Invisible QR codes tackle counterfeit bank notes

London, UK | Posted on September 11th, 2012

Publishing their research today, 12 September, in IOP Publishing's journal Nanotechnology, the researchers from the University of South Dakota and South Dakota School of Mines and Technology believe the new style of QR code could also be used to authenticate virtually any solid object.

The QR code is made of tiny nanoparticles that have been combined with blue and green fluorescence ink, which is invisible until illuminated with laser light. It is generated using computer-aided design (CAD) and printed onto a surface using an aerosol jet printer.

According to the researchers, the QR code will add an increased level of security over existing counterfeiting methods as the complexity of the production process makes it very difficult to replicate.

The combination of the blue and green inks also enabled the researchers to experiment with a variety of characters and symbols in different colours and sizes, varying from microscopic to macroscopic. Embedding these into the QR code further increases the level of security.

Under normal lighting conditions the QR code is invisible but becomes visible when near infra-red light is passed over it. This process, known as upconversion, involves the absorption of photons by the nanoparticles at a certain wavelength and the subsequent emission of photons at a shorter wavelength.

Once illuminated by the near infra-red light, the QR code can be read by a smartphone in the conventional manner.

QR codes can hold one hundred times more information than conventional barcodes and have traditionally been used in advertising and marketing. For example, simply scanning a QR code on a commercial product with a smartphone will take the user to a company's website, giving them more information about the product they are scanning.

The nanoparticles that were used to print the QR code are both chemically and mechanically stable meaning they could withstand the stresses and strains of being placed on paper. To prove this, the researchers printed the QR code onto a piece of paper and then randomly folded it fifty times; the code was still readable.

In addition to being printed on paper, the QR code has also been printed on glass and a flexible plastic film, demonstrating its applicability to a wide variety of solid commercial goods. The fact that the QR code is invisible is also beneficial as it would not interfere with the physical appearance of the goods.

The whole procedure took one-and-a-half hours, from the CAD process to the printing and then the scanning; however, the researchers are confident that once the QR file has been created, the printing en masse for commercial use would take around 10-15 minutes.

Lead author of the study, Jeevan Meruga, said: "The QR code is tough to counterfeit. We can also change our parameters to make it even more difficult to counterfeit, such as controlling the intensity of the upconverting light or using inks with a higher weight percentage of nanoparticles.

"We can take the level of security from covert to forensic by simply adding a microscopic message in the QR code, in a different coloured upconverting ink, which then requires a microscope to read the upconverted QR code."


The published version of the paper "Security printing of covert quick response codes using upconverting nanoparticle inks" Jeevan M Meruga et al 2012 Nanotechnology 23 395201 doi:10.1088/0957-4484/23/39/395201 will be freely available online from Wednesday 12 September.

####

About Institute of Physics
The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to www.iop.org

About IOP Publishing

IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to ioppublishing.org.

For more information, please click here

Contacts:
Michael Bishop

01-179-301-032

Copyright © Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The random raman laser: A new light source for the microcosmos May 4th, 2015

Defects in atomically thin semiconductor emit single photons: Researchers create optically active quantum dots in 2-D semiconductor for the first time; may have applications for integrated photonics May 4th, 2015

Arrowhead to Report Fiscal 2015 Second Quarter Financial Results May 4th, 2015

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Videos/Movies

Quantum 'paparazzi' film photons in the act of pairing up April 22nd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Better sensors for medical imaging, contraband detection: Magnetic-field detector is 1,000 times more efficient than its predecessors April 6th, 2015

Optics, nanotechnology combined to create low-cost sensor for gases April 3rd, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Discoveries

The random raman laser: A new light source for the microcosmos May 4th, 2015

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Announcements

Defects in atomically thin semiconductor emit single photons: Researchers create optically active quantum dots in 2-D semiconductor for the first time; may have applications for integrated photonics May 4th, 2015

Arrowhead to Report Fiscal 2015 Second Quarter Financial Results May 4th, 2015

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

Photonics/Optics/Lasers

The random raman laser: A new light source for the microcosmos May 4th, 2015

Defects in atomically thin semiconductor emit single photons: Researchers create optically active quantum dots in 2-D semiconductor for the first time; may have applications for integrated photonics May 4th, 2015

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Rice University's Richards-Kortum, Vardi elected to National Academy of Sciences: Bioengineer, computer scientist join elite list of dual-academy members April 29th, 2015

Research partnerships

Electron chirp: Cyclotron radiation from single electrons measured directly for first time: Method has potential to measure neutrino mass and look beyond the Standard Model of the universe April 29th, 2015

Weighing -- and imaging -- molecules one at a time April 28th, 2015

SUNY Poly and Sematech Announce Air Products Joins Cutting-Edge CMP Center At Albany Nanotech Complex April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Printing/Lithography/Inkjet/Inks

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project