Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Invisible QR codes tackle counterfeit bank notes

Abstract:
An invisible quick response (QR) code has been created by researchers in an attempt to increase security on printed documents and reduce the possibility of counterfeiting, a problem which costs governments and private industries billions of pounds each year.



The development process can be viewed in this video.

Invisible QR codes tackle counterfeit bank notes

London, UK | Posted on September 11th, 2012

Publishing their research today, 12 September, in IOP Publishing's journal Nanotechnology, the researchers from the University of South Dakota and South Dakota School of Mines and Technology believe the new style of QR code could also be used to authenticate virtually any solid object.

The QR code is made of tiny nanoparticles that have been combined with blue and green fluorescence ink, which is invisible until illuminated with laser light. It is generated using computer-aided design (CAD) and printed onto a surface using an aerosol jet printer.

According to the researchers, the QR code will add an increased level of security over existing counterfeiting methods as the complexity of the production process makes it very difficult to replicate.

The combination of the blue and green inks also enabled the researchers to experiment with a variety of characters and symbols in different colours and sizes, varying from microscopic to macroscopic. Embedding these into the QR code further increases the level of security.

Under normal lighting conditions the QR code is invisible but becomes visible when near infra-red light is passed over it. This process, known as upconversion, involves the absorption of photons by the nanoparticles at a certain wavelength and the subsequent emission of photons at a shorter wavelength.

Once illuminated by the near infra-red light, the QR code can be read by a smartphone in the conventional manner.

QR codes can hold one hundred times more information than conventional barcodes and have traditionally been used in advertising and marketing. For example, simply scanning a QR code on a commercial product with a smartphone will take the user to a company's website, giving them more information about the product they are scanning.

The nanoparticles that were used to print the QR code are both chemically and mechanically stable meaning they could withstand the stresses and strains of being placed on paper. To prove this, the researchers printed the QR code onto a piece of paper and then randomly folded it fifty times; the code was still readable.

In addition to being printed on paper, the QR code has also been printed on glass and a flexible plastic film, demonstrating its applicability to a wide variety of solid commercial goods. The fact that the QR code is invisible is also beneficial as it would not interfere with the physical appearance of the goods.

The whole procedure took one-and-a-half hours, from the CAD process to the printing and then the scanning; however, the researchers are confident that once the QR file has been created, the printing en masse for commercial use would take around 10-15 minutes.

Lead author of the study, Jeevan Meruga, said: "The QR code is tough to counterfeit. We can also change our parameters to make it even more difficult to counterfeit, such as controlling the intensity of the upconverting light or using inks with a higher weight percentage of nanoparticles.

"We can take the level of security from covert to forensic by simply adding a microscopic message in the QR code, in a different coloured upconverting ink, which then requires a microscope to read the upconverted QR code."


The published version of the paper "Security printing of covert quick response codes using upconverting nanoparticle inks" Jeevan M Meruga et al 2012 Nanotechnology 23 395201 doi:10.1088/0957-4484/23/39/395201 will be freely available online from Wednesday 12 September.

####

About Institute of Physics
The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to www.iop.org

About IOP Publishing

IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to ioppublishing.org.

For more information, please click here

Contacts:
Michael Bishop

01-179-301-032

Copyright © Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Videos/Movies

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

ASIC Development for MEMS Applications: A Platform Approach March 25th, 2015

First proof of isolated attosecond pulse generation at the carbon K-edge March 20th, 2015

Light as puppeteer: Controlling particles with light and microfibers March 18th, 2015

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Novel solid-state nanomaterial platform enables terahertz photonics February 17th, 2015

Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way February 16th, 2015

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

Discoveries

Graphene reduces wear of alumina ceramic March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Announcements

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Photonics/Optics/Lasers

Bar-Ilan U. researchers identify 'tipping point' between quantum and classical worlds: Study sheds new light on 'spooky' quantum optics March 24th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

EEE Photonics Society’s Fourth Annual Optical Interconnects Conference Seeks to Bring Together the Latest Advanced Optical Interconnect Technologies, Systems & Architectures for the Next Generation of Supercomputers & Datacenters March 23rd, 2015

Research partnerships

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Printing/Lithography/Inkjet/Inks

Haydale Announce Dedicated Graphene Inks Manufacturing Capability March 25th, 2015

NC State researchers create 'nanofiber gusher': Report method of fabricating larger amounts of nanofibers in liquid March 19th, 2015

'Additive manufacturing' could greatly improve diabetes management March 17th, 2015

Advantest to Exhibit at SEMICON China in Shanghai, China, March 17-19: Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions March 10th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE