Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Invisible QR codes tackle counterfeit bank notes

Abstract:
An invisible quick response (QR) code has been created by researchers in an attempt to increase security on printed documents and reduce the possibility of counterfeiting, a problem which costs governments and private industries billions of pounds each year.



The development process can be viewed in this video.

Invisible QR codes tackle counterfeit bank notes

London, UK | Posted on September 11th, 2012

Publishing their research today, 12 September, in IOP Publishing's journal Nanotechnology, the researchers from the University of South Dakota and South Dakota School of Mines and Technology believe the new style of QR code could also be used to authenticate virtually any solid object.

The QR code is made of tiny nanoparticles that have been combined with blue and green fluorescence ink, which is invisible until illuminated with laser light. It is generated using computer-aided design (CAD) and printed onto a surface using an aerosol jet printer.

According to the researchers, the QR code will add an increased level of security over existing counterfeiting methods as the complexity of the production process makes it very difficult to replicate.

The combination of the blue and green inks also enabled the researchers to experiment with a variety of characters and symbols in different colours and sizes, varying from microscopic to macroscopic. Embedding these into the QR code further increases the level of security.

Under normal lighting conditions the QR code is invisible but becomes visible when near infra-red light is passed over it. This process, known as upconversion, involves the absorption of photons by the nanoparticles at a certain wavelength and the subsequent emission of photons at a shorter wavelength.

Once illuminated by the near infra-red light, the QR code can be read by a smartphone in the conventional manner.

QR codes can hold one hundred times more information than conventional barcodes and have traditionally been used in advertising and marketing. For example, simply scanning a QR code on a commercial product with a smartphone will take the user to a company's website, giving them more information about the product they are scanning.

The nanoparticles that were used to print the QR code are both chemically and mechanically stable meaning they could withstand the stresses and strains of being placed on paper. To prove this, the researchers printed the QR code onto a piece of paper and then randomly folded it fifty times; the code was still readable.

In addition to being printed on paper, the QR code has also been printed on glass and a flexible plastic film, demonstrating its applicability to a wide variety of solid commercial goods. The fact that the QR code is invisible is also beneficial as it would not interfere with the physical appearance of the goods.

The whole procedure took one-and-a-half hours, from the CAD process to the printing and then the scanning; however, the researchers are confident that once the QR file has been created, the printing en masse for commercial use would take around 10-15 minutes.

Lead author of the study, Jeevan Meruga, said: "The QR code is tough to counterfeit. We can also change our parameters to make it even more difficult to counterfeit, such as controlling the intensity of the upconverting light or using inks with a higher weight percentage of nanoparticles.

"We can take the level of security from covert to forensic by simply adding a microscopic message in the QR code, in a different coloured upconverting ink, which then requires a microscope to read the upconverted QR code."


The published version of the paper "Security printing of covert quick response codes using upconverting nanoparticle inks" Jeevan M Meruga et al 2012 Nanotechnology 23 395201 doi:10.1088/0957-4484/23/39/395201 will be freely available online from Wednesday 12 September.

####

About Institute of Physics
The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to www.iop.org

About IOP Publishing

IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we're continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to ioppublishing.org.

For more information, please click here

Contacts:
Michael Bishop

01-179-301-032

Copyright © Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Videos/Movies

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

"Nanocamera" takes pictures at distances smaller than light's own wavelength: How is it possible to record optically encoded information for distances smaller than the wavelength of light? July 17th, 2014

CIQUS researchers develop an extremely simple procedure to obtain nanosized graphenes July 15th, 2014

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Self-assembling nanoparticle could improve MRI scanning for cancer diagnosis: Scientists have designed a new self-assembling nanoparticle that targets tumours, to help doctors diagnose cancer earlier July 16th, 2014

Projecting a Three-Dimensional Future: TAU researchers develop holography technology that could change the way we view the world July 9th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Discoveries

Flexible Metamaterial Absorbers July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Photonics/Optics/Lasers

Terabyte Photonic Dataset Sale July 30th, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Research partnerships

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Printing/Lithography/Inkjet/Inks

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE