Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Iranian Scientists Synthesize Core-Shell Nanocrystals through Surfactant-Free Technique

Abstract:
Iranian researchers at Ferdowsi University of Mashhad devised a new scheme for preparation of core-shell nanocrystals, by combining the microemulsion and ultrasonication methods, which features moderate synthesis conditions and does not require any surfactants.

Iranian Scientists Synthesize Core-Shell Nanocrystals through Surfactant-Free Technique

Tehran, Iran | Posted on July 5th, 2012

The properties of core-shell composites depend heavily on the materials constituting both the core and the shell parts. These compounds offer superiorities in terms of dimension, optical properties, electronic characteristics, etc. so that they have found various applications in photovoltaic cells, optical sensors and catalysis technology, just to mention a few areas.

As reported in a previous work available in the literature, a thin shell of a wide-band gap semiconductor has been deposited upon a small-band gap semiconducting core substrate through an innovative method. Despite its own advantages, the mentioned method is prone to yield non-uniform deposition of inorganic materials on small cores. Besides, the fabrication process demands high temperatures and long aging times as its other downsides.

In an attempt to refine and improve the aforementioned synthesis method, a number of researchers at the Ferdowsi University of Mashhad have come up with core-shell CdS/TiO2 nanocomposites via a surfactant-free approach.

The researchers initially prepared CdS nanoparticles by means of ultrasonication and microemulsification without adding any surfactants. The synthesized nanoparticles were then mixed with TiO2 under ultrasonic irradiation. The latter caused the formation of a thin layer of TiO2 over the CdS nanoparticles and resulted in their swelling. The formation of core-shell structures is due to the involved cavitation phenomenon which forces powerful and high-speed collisions of the nanoparticles. In addition, the ultrasonic waves control the condensation and hydrolysis of titanium tetra isopropoxide as well as shaping of the TiO2 shell.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Chemistry

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Density gradient ultracentrifugation for colloidal nanostructures separation and investigation June 5th, 2018

From Face Recognition to Phase Recognition: Neural Network Captures Atomic-Scale Rearrangements: Scientists use approach analogous to facial-recognition technology to track atomic-scale rearrangements relevant to phase changes, catalytic reactions, and more May 31st, 2018

Northwestern researchers predict materials to stabilize record-high capacity lithium-ion battery: Advancement could pave the way for less expensive, longer-lasting batteries for electric vehicles May 29th, 2018

Sensors

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Discoveries

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Materials/Metamaterials

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Announcements

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Energy

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Photonics/Optics/Lasers

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Solar/Photovoltaic

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Research gives new ray of hope for solar fuel April 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project