Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > First 3D Nanoscale Optical Cavities from Metamaterials: Berkeley Lab Development Holds Promise for Nanolasers, LEDs, Optical Sensors and Photonic Communications

This schematic shows (a) an indefinite metamaterial structure with alternating silver and germanium multilayers; and (b) its iso-frequency contour of light wave vectors with negative refractions along the x- and y-directions, and positive along the z-direction. (Courtesy of Xiang Zhang group)
This schematic shows (a) an indefinite metamaterial structure with alternating silver and germanium multilayers; and (b) its iso-frequency contour of light wave vectors with negative refractions along the x- and y-directions, and positive along the z-direction.

(Courtesy of Xiang Zhang group)

Abstract:
The world's smallest three-dimensional optical cavities with the potential to generate the world's most intense nanolaser beams have been created by a scientific team led by researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley. In addition to nanolasers, these unique optical cavities with their extraordinary electromagnetic properties should be applicable to a broad range of other technologies, including LEDs, optical sensing, nonlinear optics, quantum optics and photonic integrated circuits.

First 3D Nanoscale Optical Cavities from Metamaterials: Berkeley Lab Development Holds Promise for Nanolasers, LEDs, Optical Sensors and Photonic Communications

Berkeley, CA | Posted on June 27th, 2012

By alternating super-thin multiple layers of silver and germanium, the researchers fabricated an "indefinite metamaterial" from which they created their 3D optical cavities. In natural materials, light behaves the same no matter what direction it propagates. In indefinite metamaterials, light can actually be bent backwards in some directions, a property known as negative refraction. The use of this indefinite metamaterial enabled the scaling down of the 3D optical cavities to extremely deep subwavelength (nanometer) size, resulting in a "hyperboloid iso-frequency contour" of light wave vectors (a measure of magnitude and direction) that supported the highest optical refractive indices ever reported.

This study was directed by Xiang Zhang, a principal investigator with Berkeley Lab's Materials Sciences Division and director of UC Berkeley's Nano-scale Science and Engineering Center (SINAM). He is the corresponding author of a paper describing this research titled "Experimental realization of three-dimensional indefinite cavities at the nanoscale with an anomalous scaling law," which has been published in the journal Nature Photonics. Co-authoring this paper with Zhang were Xiaodong Yang, Jie Yao, Junsuk Rho and Xiaobo Yin.

"Our work opens up a new approach for designing a truly nano-scale optical cavity," Zhang says. "By using metamaterials, we show intriguing cavity physics that counters conventional wisdom. For example, the quality factor of our optical mode rapidly increases with the decrease of cavity size. The results of this study provide us with a tremendous opportunity to develop high performance photonic devices for communications."

Optical cavities are the major components of most lasers. Light confined within an optical cavity will be reflected back and forth between two opposing mirrors to produce a standing wave at a specific resonant frequency. It is from this standing light wave that a laser beam is generated. Optical cavities made from natural materials can be no smaller than the wavelength of the light propagating through them. Metamaterials, however, allow for electromagnetic behavior that is not attainable in nature. Engineered from a combination of metals and dielectrics - insulators that become polarized in the presence of an electromagnetic field - metamaterials derive their optical properties from their structure rather than their chemical composition, as is the case with natural optical materials.

"Due to the unnaturally high refractive index supported in the metamaterials, our 3D cavities can be smaller than one tenth of the optical wavelength," says Xiaodong Yang, lead author of the Nature Photonics paper who is now with the Missouri University of Science and Technology. "At these nanoscale dimensions, optical cavities compress the optical mode into a tiny space, increasing the photon density of states and thereby enhancing the interactions between light and matter."

Another advantage of using indefinite metamaterials to make their 3D optical cavities, Yang says, is that cavities with different sizes can have the same resonance frequency, providing more flexibility in the optical cavity design. Another advantage is that the photons lost when light is reflected back and forth - a problem for optical cavities from natural materials - is reduced as the cavity size gets smaller. Yang says this will benefit the design of future nanoscale lasers.

Germanium was the dielectric chosen to make this metamaterial because it has a relatively high refractive index (about 4.0), compared to air (1.0), which is the dielectric most typically used to make a metamaterial. The alternating layers of silver (20 nanometers thick) and germanium (30 nanometers thick) were cut into cubes of various sizes, depending on the number of metal/dielectric layers. The cube walls tilt into the shape of a trapezoid during the final stage of fabrication with a nano-sized optical cavity in the core.

"The hyperboloid iso-frequency contour of wave vector space in these cavities allowed us to reach very high wave vector values, Yang says. "As wave vector values are proportional to the refractive index, we were able to record optical refractive indices as large as 17.4, which is far beyond that found in natural materials."

This research was supported by the U.S. Department of Air Force Office of Scientific Research.

####

About DOE/Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © DOE/Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information about the research of Xiang Zhang visit:

Related News Press

News and information

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Laboratories

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Discoveries

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Announcements

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Tools

Phenom-World Launches Phenom Pro and ProX Generation 5 SEMs at Microscopy & Microanalysis Conference USA: The excellent performance in a wide range of applications offers a serious alternative to floor model SEMs July 26th, 2017

The School of Materials at the University of Manchester utilise Deben’s mechanical stages to characterise structure and behaviour at the micro- and nano- scale July 25th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Military

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Nature-inspired material uses liquid reinforcement: Rice U. nanoengineers create liquid-solid composites using clues from nature July 11th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

Photonics/Optics/Lasers

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Research partnerships

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project