Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Emory University Purchases a Dip Pen Nanolithography System from NanoInk: Printing multi-component nanoscale arrays of tension sensors will advance understanding of mechano-transduction in living cells

Abstract:
NanoInk's NanoFabrication Systems Division is pleased to announce that Emory University recently purchased a Dip Pen Nanolithography® (DPN®) system to quantify the forces exerted by single receptor molecules in real time across entire cells or tissues. Dip Pen Nanolithography is a direct write, tip-based lithography technique capable of multi-component deposition of a wide range of materials with nanoscale registry. It can fabricate multiplexed, customized patterns with feature sizes as small as 50 nanometers or as big as 10 microns on a variety of substrates including glass, plastic, gold and silicon. Emory is located in Atlanta, Ga. and is recognized internationally for its outstanding liberal arts college and as one of the nation's leading research universities.

Emory University Purchases a Dip Pen Nanolithography System from NanoInk: Printing multi-component nanoscale arrays of tension sensors will advance understanding of mechano-transduction in living cells

Chicago, IL | Posted on June 27th, 2012

"We are very excited about coupling Dip Pen Nanolithography with our newly developed method for force sensing to directly print nanoscale arrays of tension sensors. One of the biggest questions in the field of mechano-transduction pertains to the role of receptor clustering in force transmission. We plan on addressing this question by investigating the integrin, Notch, and EGF receptors using this hybrid nanotechnology-biophysics approach in living cells," said Khalid Salaita, assistant professor of Chemistry at Emory University. "I have used Dip Pen Nanolithography for almost a decade now and I'm confident that it will allow us to push the frontiers of understanding the mechano-chemistry of cells."

"Dip Pen Nanolithography provides a set of capabilities that are not available in any other nanolithography method," said Tom Warwick, NanoInk's general manager of NanoInk's NanoFabrication Systems Division. "We look forward to seeing the innovations and breakthroughs that will soon come from Khalid Salaita and his team at Emory University using the high-throughput afforded by 2D DPN and Polymer Pen Lithography techniques."

Professor Salaita and Yoshie Narui, his graduate student, previously used Dip Pen Nanolithography to develop a new method for controlling ligand spatial organization that holds potential for investigating supramolecular protein assemblies in living cells. This work was published in the 2011 November issue of Chemical Science. The article titled, "Dip-pen nanolithography of optically transparent cationic polymers to manipulate spatial organization of proteolipid membranes," is available at: pubs.rsc.org/en/Content/ArticleLanding/2012/SC/C1SC00475A.

The Salaita Group at Emory University is a multidisciplinary research group focused on the areas of materials, biophysical and biological chemistry. It develops chemical tools to better understand how information (chemical and physical signals) is transmitted in living systems. More information is available at: chemistry.emory.edu/faculty/salaita/Home.html

NanoInk's NanoFabrication Systems Division brings sophisticated nanofabrication to the laboratory desktop in an easy to use and affordable setting. Additional details can be found at: nanoink.net/products-services.html.

####

About NanoInk
NanoInk, Inc. is an emerging growth technology company specializing in nanometer-scale manufacturing and applications development for the life sciences, engineering, pharmaceutical, and education industries. Using Dip Pen Nanolithography® (DPN®), a patented and proprietary nanofabrication technology, scientists are enabled to rapidly and easily create micro-and nanoscale structures from a variety of materials on a range of substrates. This low cost, easy to use and scalable technique brings sophisticated nanofabrication to the laboratory desktop. Headquartered in the Illinois Science + Technology Park, north of Chicago, NanoInk currently has several divisions including the NanoFabrication Systems Division, the Nano BioDiscovery Division, the NanoProfessor® Division and the NanoGuardian™ Division.

NanoInk, the NanoInk logo, Dip Pen Nanolithography, DPN, and NanoProfessor are registered trademarks of NanoInk, Inc.

For more information, please click here

Contacts:
Joshua Taustein
Dresner Corporate Services
(312)780-7219


David Gutierrez
Dresner Corporate Services
(312)780-7204

Copyright © NanoInk, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Discoveries

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Tools

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Nanocubes simplify printing and imaging in color and infrared: New technology allows multispectral reactions on a single chip December 15th, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project