Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers test carbon nanotube-based ultra-low voltage integrated circuits

Abstract:
A team of researchers from Peking University in Beijing, China, and Duke University in Durham, North Carolina, has demonstrated that carbon nanotube-based integrated circuits can work under a supply voltage much lower than that used in conventional silicon integrated circuits.

Researchers test carbon nanotube-based ultra-low voltage integrated circuits

College Park, MD | Posted on June 24th, 2012

Low supply voltage circuits produce less heat, which is a key limiting factor for increased circuit density. Carbon-based electronics have attracted attention mostly because of their speed. The new research shows that carbon nanotube integrated circuits could also offer the promise of extending Moore's Law by allowing even more transistors to fit onto a single chip without overheating. The results are reported in a paper accepted for publication in the American Institute of Physics' journal Applied Physics Letters.
###

Title: "Carbon nanotube based ultra-low voltage integrated circuits: scaling down to 0.4 V"

Journal: Applied Physics Letters

Authors: Li Ding (1), Shibo Liang (1), Tian Pei (1), Zhiyong Zhang (1), Sheng Wang (1), Weiwei Zhou (2), Jie Liu (2), and Lian-Mao Peng (1)

(1) Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, China

(2) Department of Chemistry, Duke University, North Carolina

####

For more information, please click here

Contacts:
Catherine Meyers

301-209-3088

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Observing biological nanotransporters: Chemistry April 19th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Chip Technology

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level April 16th, 2018

Nanometrics to Announce First Quarter Financial Results on May 1, 2018 April 10th, 2018

High-speed and on-silicon-chip graphene blackbody emitters: Integrated light emitters for optical communications April 5th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Plasmons triggered in nanotube quantum wells: Rice, Tokyo Metropolitan scientists create platform for unique near-infrared devices March 16th, 2018

Big steps toward control of production of tiny building blocks March 9th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Discoveries

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

One string to rule them all April 17th, 2018

Announcements

Observing biological nanotransporters: Chemistry April 19th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Research partnerships

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

Artificial intelligence accelerates discovery of metallic glass: Machine learning algorithms pinpoint new materials 200 times faster than previously possible April 13th, 2018

Ultra-powerful batteries made safer, more efficient: Team aims to curb formation of harmful crystal-like masses in lithium metal batteries April 12th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project