Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Looking At and Into the Ultra-Small

The helium ion microscope has high depth of focus and resolution providing researchers with images of gallium nitride nanowires that would be impossible to produce with electron microscopy. In addition, helium ions provide the ability to etch very precisely.
The helium ion microscope has high depth of focus and resolution providing researchers with images of gallium nitride nanowires that would be impossible to produce with electron microscopy. In addition, helium ions provide the ability to etch very precisely.

Abstract:
NIST is taking a huge step into the ultra-small with the Precision Imaging Facility (PIF) now being outfitted in new Precision Measurement Laboratory on the Boulder campus. The PIF, which houses some of the most advanced imaging instruments in the world, will give researchers the ability to dissect, create, and catalog technologically important materials and devices at the atomic level, and will fill researchers' microscopy and microanalysis needs for years to come. Completion is scheduled for mid-2012.

Looking At and Into the Ultra-Small

Boulder, CO | Posted on June 13th, 2012

A suite of four new instruments and supporting equipment "will directly benefit a broad spectrum of NIST/Boulder's already successful projects," says PIF's Aric Sanders of PML's Quantum Electronics and Photonics Division. "In particular, they will impact projects that create advanced quantum sensors, conduct nanowire-based renewable energy metrology, devise chip-scale atomic clocks and nanoscale magnetic devices, and investigate the reliability of nanomaterials."

The specifications for the 3000-square-foot, shared-use facility were determined by a collaboration of groups at NIST/Boulder, including PML's Time and Frequency, Quantum Electronics and Photonics, and Electromagnetics divisions, as well as the Thermophysical Properties and Materials Reliability divisions of NIST's Material Measurement Laboratory.

The PIF's technological capabilities - the most sophisticated available outside certain Department of Energy facilities - will particularly benefit programs which rely on the complicated interworking of nanoscale materials and microfabrication technology that can only be probed by advanced imaging tools. Eventually, the full suite of instruments will include an aberration-corrected transmission electron microscope (TEM), a combination focused ion beam/scanning electron beam microscope (FIB/SEM), a helium ion microscope, and a local electrode atom probe (LEAP).
Image of gallium nitride nanowires.

The helium ion microscope has high depth of focus and resolution providing researchers with images of gallium nitride nanowires that would be impossible to produce with electron microscopy. In addition, helium ions provide the ability to etch very precisely. (Click image to enlarge.)
Each instrument offers distinctive advantages for measurement and analysis.

The TEM opens the door to sub-angstrom (1 Ň = 10-10 m) resolution imaging necessary for the characterization of crystalline materials used for single photon emitters, nanoscale light sources, and advanced quantum information circuits. The aberration-corrected TEM, the electrons from which pass completely through the specimen and are imaged on the other side, can locally investigate chemical composition, creating the ability to evaluate directly the results of advanced crystal growth techniques needed for the next generation of such devices.
The FIB/SEM combines two functions that together enable highly precise, three-dimensional manipulation and preparation of samples. A focused beam of ions selectively mills devices and materials at nanometer scales, while the sample is also imaged by an SEM. The combination can reveal internal structure in exquisite detail, and provides an indispensable tool for the preparation of samples for the other analytical techniques such as atom probe and transmission electron microscopy.
The helium ion microscope provides a completely new methodology for imaging surfaces of biological and inorganic materials. Because of the nature of helium ion-sample interactions , this tool also provides the ability to pattern samples without the limitations of imposed by electron beam techniques thus opening the path to devices of sub-10 nm sizes with sub-15 nm spacing.
Local-Electrode Atom Probe (LEAP) devices produce the highest spatial resolution currently available for analyzing specimens at the nanoscale. The PIF's LEAP, when installed, will reconstruct analytic volumes atom by atom, revealing the location and chemical composition of structures invisible to other methods. In particular it has a sensitivity to atomic species and location that is unmatched in other analytic instruments. The atom probe is the only microscope that can achieve 1 part per million resolution in chemistry and effectively single atomic spatial resolution. Although averaging techniques can yield higher chemical resolution (1 He atom in 106 Si atoms, for example) they average over a larger area to achieve this. The new LEAPwill offer NIST researchers the ability to investigate, for example, the distribution of dopants in nanoscale semiconductor devices.


The capabilities of these four instruments, coupled with the associated sample preparation and inspection resources also housed in the PIF, provide uniquely powerful abilities to NIST and potentially, through focused collaborations, to the broader scientific community.

Operation of the PIF is modeled on the very successful cooperative Boulder microfabrication facility which has been in existence for many years. In this operational model all projects at NIST Boulder have access to the PIF and the extension and refinement of the facility and its resources evolves continually to meet the needs of NIST's world-class research.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

Any mention or image of commercial products within NIST web pages is for information only; it does not imply recommendation or endorsement by NIST.

For more information, please click here

Contacts:
Aric Sanders
303-497-4731

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Imaging

Oxford Instrumentsí 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Laboratories

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Cleaning or Etching Items with Unique Geometries Requires Specialized Expertise June 27th, 2018

Govt.-Legislation/Regulation/Funding/Policy

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Announcements

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Tools

Oxford Instrumentsí 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Nanometrics to Participate in the 10th Annual CEO Investor Summit 2018: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2018 in San Francisco June 28th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project