Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Looking At and Into the Ultra-Small

The helium ion microscope has high depth of focus and resolution providing researchers with images of gallium nitride nanowires that would be impossible to produce with electron microscopy. In addition, helium ions provide the ability to etch very precisely.
The helium ion microscope has high depth of focus and resolution providing researchers with images of gallium nitride nanowires that would be impossible to produce with electron microscopy. In addition, helium ions provide the ability to etch very precisely.

Abstract:
NIST is taking a huge step into the ultra-small with the Precision Imaging Facility (PIF) now being outfitted in new Precision Measurement Laboratory on the Boulder campus. The PIF, which houses some of the most advanced imaging instruments in the world, will give researchers the ability to dissect, create, and catalog technologically important materials and devices at the atomic level, and will fill researchers' microscopy and microanalysis needs for years to come. Completion is scheduled for mid-2012.

Looking At and Into the Ultra-Small

Boulder, CO | Posted on June 13th, 2012

A suite of four new instruments and supporting equipment "will directly benefit a broad spectrum of NIST/Boulder's already successful projects," says PIF's Aric Sanders of PML's Quantum Electronics and Photonics Division. "In particular, they will impact projects that create advanced quantum sensors, conduct nanowire-based renewable energy metrology, devise chip-scale atomic clocks and nanoscale magnetic devices, and investigate the reliability of nanomaterials."

The specifications for the 3000-square-foot, shared-use facility were determined by a collaboration of groups at NIST/Boulder, including PML's Time and Frequency, Quantum Electronics and Photonics, and Electromagnetics divisions, as well as the Thermophysical Properties and Materials Reliability divisions of NIST's Material Measurement Laboratory.

The PIF's technological capabilities - the most sophisticated available outside certain Department of Energy facilities - will particularly benefit programs which rely on the complicated interworking of nanoscale materials and microfabrication technology that can only be probed by advanced imaging tools. Eventually, the full suite of instruments will include an aberration-corrected transmission electron microscope (TEM), a combination focused ion beam/scanning electron beam microscope (FIB/SEM), a helium ion microscope, and a local electrode atom probe (LEAP).
Image of gallium nitride nanowires.

The helium ion microscope has high depth of focus and resolution providing researchers with images of gallium nitride nanowires that would be impossible to produce with electron microscopy. In addition, helium ions provide the ability to etch very precisely. (Click image to enlarge.)
Each instrument offers distinctive advantages for measurement and analysis.

The TEM opens the door to sub-angstrom (1 Ĺ = 10-10 m) resolution imaging necessary for the characterization of crystalline materials used for single photon emitters, nanoscale light sources, and advanced quantum information circuits. The aberration-corrected TEM, the electrons from which pass completely through the specimen and are imaged on the other side, can locally investigate chemical composition, creating the ability to evaluate directly the results of advanced crystal growth techniques needed for the next generation of such devices.
The FIB/SEM combines two functions that together enable highly precise, three-dimensional manipulation and preparation of samples. A focused beam of ions selectively mills devices and materials at nanometer scales, while the sample is also imaged by an SEM. The combination can reveal internal structure in exquisite detail, and provides an indispensable tool for the preparation of samples for the other analytical techniques such as atom probe and transmission electron microscopy.
The helium ion microscope provides a completely new methodology for imaging surfaces of biological and inorganic materials. Because of the nature of helium ion-sample interactions , this tool also provides the ability to pattern samples without the limitations of imposed by electron beam techniques thus opening the path to devices of sub-10 nm sizes with sub-15 nm spacing.
Local-Electrode Atom Probe (LEAP) devices produce the highest spatial resolution currently available for analyzing specimens at the nanoscale. The PIF's LEAP, when installed, will reconstruct analytic volumes atom by atom, revealing the location and chemical composition of structures invisible to other methods. In particular it has a sensitivity to atomic species and location that is unmatched in other analytic instruments. The atom probe is the only microscope that can achieve 1 part per million resolution in chemistry and effectively single atomic spatial resolution. Although averaging techniques can yield higher chemical resolution (1 He atom in 106 Si atoms, for example) they average over a larger area to achieve this. The new LEAPwill offer NIST researchers the ability to investigate, for example, the distribution of dopants in nanoscale semiconductor devices.


The capabilities of these four instruments, coupled with the associated sample preparation and inspection resources also housed in the PIF, provide uniquely powerful abilities to NIST and potentially, through focused collaborations, to the broader scientific community.

Operation of the PIF is modeled on the very successful cooperative Boulder microfabrication facility which has been in existence for many years. In this operational model all projects at NIST Boulder have access to the PIF and the extension and refinement of the facility and its resources evolves continually to meet the needs of NIST's world-class research.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

Any mention or image of commercial products within NIST web pages is for information only; it does not imply recommendation or endorsement by NIST.

For more information, please click here

Contacts:
Aric Sanders
303-497-4731

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Light-powered gyroscope is world's smallest: Promises a powerful spin on navigation April 1st, 2015

Imaging

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

FEI Technology Award of the German Neuroscience Society Goes to Benjamin Judkewitz of the University of Berlin: Bi-annual award honors excellence in brain research during the German Neuroscience Society’s Annual Meeting, held 18-21 March 2015 March 26th, 2015

Laboratories

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Announcements

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Tools

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

PIHera: Largest Family of Piezo Stage Scanners with 10X Greater Positioning Area March 31st, 2015

New Applications Brochure on Complex Motion Control Systems for Scientific Research March 31st, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE