Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny 'speed bump' device could sort cancer cells

In an illustration, magnetically labeled circulating tumor cells (shown as yellow spheres) travel with red and white blood cells and platelets over an array of slanted ramps in the device. The ramps act as speed bumps, slowing the tumor cells. As the tumor cells slow, the flow carries them along the length of the ramp, causing lateral displacement. After the tumor cells traverse an array of these ramps, they have sufficiently been displaced and can be continuously isolated from other cells in the sample.

Credit: Martin Rietveld
In an illustration, magnetically labeled circulating tumor cells (shown as yellow spheres) travel with red and white blood cells and platelets over an array of slanted ramps in the device. The ramps act as speed bumps, slowing the tumor cells. As the tumor cells slow, the flow carries them along the length of the ramp, causing lateral displacement. After the tumor cells traverse an array of these ramps, they have sufficiently been displaced and can be continuously isolated from other cells in the sample.

Credit: Martin Rietveld

Abstract:
In life, we sort soiled laundry from clean; ripe fruit from rotten. Two Johns Hopkins engineers say they have found an easy way to use gravity or simple forces to similarly sort microscopic particles and bits of biological matter -- including circulating tumor cells.

Tiny 'speed bump' device could sort cancer cells

Baltimore, MD | Posted on June 12th, 2012

In the May 25 online issue of Physical Review Letters, German Drazer, an assistant professor of chemical and biomolecular engineering, and his doctoral student, Jorge A. Bernate, reported that they have developed a lab-on-chip platform, also known as a microfluidic device, that can sort particles, cells or other tiny matter by physical means such as gravity. By moving a liquid over a series of micron-scale high diagonal ramps -- similar to speed bumps on a road -- the device causes microscopic material to separate into discrete categories, based on weight, size or other factors, the team reported.

The process described in the journal article could be used to produce a medical diagnostic tool, the Whiting School of Engineering researchers say. "The ultimate goal is to develop a simple device that can be used in routine checkups by health care providers," said doctoral student Bernate, who is lead author on the paper. "It could be used to detect the handful of circulating tumor cells that have managed to survive among billions of normal blood cells. This could save millions of lives."

Ideally, these cancer cells in the bloodstream could be detected and targeted for treatment before they've had a chance to metastasize, or spread cancer elsewhere. Detection at early stages of cancer is critical for successful treatment.

How does this sorting process occur? Bernate explained that inside the microfluidic device, particles and cells suspended in liquid flow along a "highway" that has speed-bump-like obstacles positioned diagonally, instead of perpendicular to the path. The speed bumps differ in height, depending on the application.

"As different particles are driven over these diagonal speed bumps, heavier ones have a harder time getting over than the lighter ones," the doctoral student said. When the particles cannot get over the ramp, they begin to change course and travel diagonally along the length of the obstacle. As the process continues, particles end up fanning out in different directions.

"After the particles cross this section of the 'highway,'" Bernate said, "they end up in different 'lanes' and can take different 'exits,' which allows for their continuous separation."

Gravity is not the only way to slow down and sort particles as they attempt to traverse the speed bumps. "Particles with an electrical charge or that are magnetic may also find it hard to go up over the obstacles in the presence of an electric or magnetic field," Bernate said. For example, cancer cells could be "weighted down" with magnetic beads and then sorted in a device with a magnetic field.

The ability to sort and separate things at the micro- and nanoscale is important in many industries, ranging from solar power to bio-security. But Bernate said that a medical application is likely to be the most promising immediate use for the device.

He is slated to complete his doctoral studies this summer, but until then, Bernate will continue to collaborate with researchers in the lab of Konstantinos Konstantopoulos, professor and chair of the Department of Chemical and Biomolecular Engineering, and with colleagues at InterUniversity Microelectronics Center, IMEC, in Belgium. In 2011, Bernate spent 10 weeks at IMEC in a program hosted by Johns Hopkins' Institute for NanoBioTechnology and funded by the National Science Foundation.

His doctoral adviser, Drazer, said, the research described in the new journal article eventually led Jorge down the path at IMEC to develop a device that can easily sort whole blood into its components. A provisional patent has been filed for this device.

The research by Bernate and Drazer was funded in part by the National Science Foundation and the National Institutes of Health.

Illustrations and short video available; contact Mary Spiro or Phil Sneiderman.

####

For more information, please click here

Contacts:
Mary Spiro

410-516-4802

Copyright © Johns Hopkins University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

German Drazer's Web page:

Department of Chemical and Biomolecular Engineering:

Related News Press

News and information

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Videos/Movies

Nanotech Advances Future Mobile Devices and Wearable Technology July 5th, 2017

ANU invention may help to protect astronauts from radiation in space July 3rd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Nanomedicine

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Discoveries

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Announcements

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Research partnerships

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project