Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bacterial armor for the first time visualized in minute detail

Abstract:
Not always pathogenic

Bacteria are omnipresent - in the water, the air and the soil, as well as in plants, animals and even people. We tend to think of bacteria as pathogenic, causing disease. We associate them with intestinal upsets and throat infections, pneumonia and blood poisoning. However, the great majority of bacteria are really useful - they play a role in our digestion, clean up waste water in sewage treatment plants, produce yoghurt and cheese from milk, and some are even used in the manufacture of drugs.

Bacterial armor for the first time visualized in minute detail

Belgium | Posted on June 11th, 2012

All the more reason then for getting to know bacteria really well and finding out how they grow and divide, interact with their surroundings and make us sick, or how we can put their properties to even better use. In spite of centuries of research, however, bacteria still hold many mysteries.

A micro-sized mail coat

For fifty years now, bacteriologists have known that most bacteria develop an outside protein layer consisting of thousands of hooked together copies of a single protein.

The structure and function of this so-called S-layer can best be compared to an armor or mail coat. Until now scientists had a very limited understanding of the structure and function of this protective coat, which is rather remarkable, given that some bacteria invest up to a third of their total protein production in its construction.

With the publication of their findings in Nature, VIB researchers Han Remaut and Ekaterina Baranova at the Vrije Universiteit Brussel, together with French and British scientists, have pulled the hitherto unknown S layer out of obscurity. "We succeeded in imaging the structure of the protein coat for one specific bacterium (Geobacillus stearothermophilus) down to its individual atoms," says Han Remaut. "We were also able to determine how the individual proteins attached to each other to form a 2D structure similar to a kind of mail coat from the Middle Ages, but on a molecular scale, of course."

This tour de force required using a combination of technologies, including X-ray equipment and electronic microscopy. The most formidable challenge was converting the proteins into stable crystals. For that part of the research, the scientists used small antibodies, so-called nanobodies. These were able to stabilize the protein crystals so that their structure could be imaged in detail with X-ray diffraction.

Protection from the outside world

"What we see confirms our earlier assumption that the S-layer functions as a protective coat against outside threats, such as viruses or proteins targeting the bacterial cell wall," continues Remaut, "because if the same bacteria are grown in a 'friendly' environment, free of extraneous threats, they do not develop an S-layer. We also saw that there are chinks in the armor which allow for the exchange of nutrients and other useful substances with the outside world."

To what extent the protein coat plays a role in disease processes in humans still needs to be determined by the Brussels researchers. The S-layer they imaged was that of a harmless soil bacterium. Some pathogenic bacteria, such as those that cause anthrax (Bacillus anthracis) or the hospital bug Clostridium difficile, also feature this type of armor. "There are indications that these bacteria use their S-layer for attaching to the cells of the host. But whether the S-layer forms a potential starting point for fighting these bacteria is still unclear," adds Remaut. "That will require more research."

Interface with nanotechnology

Remaut's research is also being followed with interest by chemists, nanotechnologists and material scientists. The 2D-structure and mechanisms underlying the development of the S-layer makes it suitable as a component or as a model for new nanomaterials. In particular, the self-assembly of the S-layer fascinates scientists. "You can compare this self-assembly to a pile of bricks organizing themselves into a perfectly laid wall, but on a nanoscale - one-billionth the size of a common brick," says Remaut. "Such artificial miniature structures could be used, for example, for efficiently delivering active ingredients, such as drugs, to places in the body that are hard to reach."

This is an excellent example of how fundamental biology research can be a source of inspiration for the development of future nanomaterials.

Scientific publication

The research will be published in the leading journal Nature (SbsB structure and lattice reconstruction unveil Ca21 triggered S-layer assembly), Doi 10.1038/nature11155.

####

For more information, please click here

Contacts:
Sooike Stoops

32-924-46611

Copyright © VIB (the Flanders Institute for Biotechnology)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Self Assembly

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Discoveries

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Materials/Metamaterials

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Announcements

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Nanobiotechnology

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project