Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bacterial armor for the first time visualized in minute detail

Abstract:
Not always pathogenic

Bacteria are omnipresent - in the water, the air and the soil, as well as in plants, animals and even people. We tend to think of bacteria as pathogenic, causing disease. We associate them with intestinal upsets and throat infections, pneumonia and blood poisoning. However, the great majority of bacteria are really useful - they play a role in our digestion, clean up waste water in sewage treatment plants, produce yoghurt and cheese from milk, and some are even used in the manufacture of drugs.

Bacterial armor for the first time visualized in minute detail

Belgium | Posted on June 11th, 2012

All the more reason then for getting to know bacteria really well and finding out how they grow and divide, interact with their surroundings and make us sick, or how we can put their properties to even better use. In spite of centuries of research, however, bacteria still hold many mysteries.

A micro-sized mail coat

For fifty years now, bacteriologists have known that most bacteria develop an outside protein layer consisting of thousands of hooked together copies of a single protein.

The structure and function of this so-called S-layer can best be compared to an armor or mail coat. Until now scientists had a very limited understanding of the structure and function of this protective coat, which is rather remarkable, given that some bacteria invest up to a third of their total protein production in its construction.

With the publication of their findings in Nature, VIB researchers Han Remaut and Ekaterina Baranova at the Vrije Universiteit Brussel, together with French and British scientists, have pulled the hitherto unknown S layer out of obscurity. "We succeeded in imaging the structure of the protein coat for one specific bacterium (Geobacillus stearothermophilus) down to its individual atoms," says Han Remaut. "We were also able to determine how the individual proteins attached to each other to form a 2D structure similar to a kind of mail coat from the Middle Ages, but on a molecular scale, of course."

This tour de force required using a combination of technologies, including X-ray equipment and electronic microscopy. The most formidable challenge was converting the proteins into stable crystals. For that part of the research, the scientists used small antibodies, so-called nanobodies. These were able to stabilize the protein crystals so that their structure could be imaged in detail with X-ray diffraction.

Protection from the outside world

"What we see confirms our earlier assumption that the S-layer functions as a protective coat against outside threats, such as viruses or proteins targeting the bacterial cell wall," continues Remaut, "because if the same bacteria are grown in a 'friendly' environment, free of extraneous threats, they do not develop an S-layer. We also saw that there are chinks in the armor which allow for the exchange of nutrients and other useful substances with the outside world."

To what extent the protein coat plays a role in disease processes in humans still needs to be determined by the Brussels researchers. The S-layer they imaged was that of a harmless soil bacterium. Some pathogenic bacteria, such as those that cause anthrax (Bacillus anthracis) or the hospital bug Clostridium difficile, also feature this type of armor. "There are indications that these bacteria use their S-layer for attaching to the cells of the host. But whether the S-layer forms a potential starting point for fighting these bacteria is still unclear," adds Remaut. "That will require more research."

Interface with nanotechnology

Remaut's research is also being followed with interest by chemists, nanotechnologists and material scientists. The 2D-structure and mechanisms underlying the development of the S-layer makes it suitable as a component or as a model for new nanomaterials. In particular, the self-assembly of the S-layer fascinates scientists. "You can compare this self-assembly to a pile of bricks organizing themselves into a perfectly laid wall, but on a nanoscale - one-billionth the size of a common brick," says Remaut. "Such artificial miniature structures could be used, for example, for efficiently delivering active ingredients, such as drugs, to places in the body that are hard to reach."

This is an excellent example of how fundamental biology research can be a source of inspiration for the development of future nanomaterials.

Scientific publication

The research will be published in the leading journal Nature (SbsB structure and lattice reconstruction unveil Ca21 triggered S-layer assembly), Doi 10.1038/nature11155.

####

For more information, please click here

Contacts:
Sooike Stoops

32-924-46611

Copyright © VIB (the Flanders Institute for Biotechnology)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Self Assembly

First multicellular organism inspires the design of better cancer drugs September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Nanomedicine

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Materials/Metamaterials

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Chains of nanogold forged with atomic precision September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Announcements

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Nanobiotechnology

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic