Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bacterial armor for the first time visualized in minute detail

Abstract:
Not always pathogenic

Bacteria are omnipresent - in the water, the air and the soil, as well as in plants, animals and even people. We tend to think of bacteria as pathogenic, causing disease. We associate them with intestinal upsets and throat infections, pneumonia and blood poisoning. However, the great majority of bacteria are really useful - they play a role in our digestion, clean up waste water in sewage treatment plants, produce yoghurt and cheese from milk, and some are even used in the manufacture of drugs.

Bacterial armor for the first time visualized in minute detail

Belgium | Posted on June 11th, 2012

All the more reason then for getting to know bacteria really well and finding out how they grow and divide, interact with their surroundings and make us sick, or how we can put their properties to even better use. In spite of centuries of research, however, bacteria still hold many mysteries.

A micro-sized mail coat

For fifty years now, bacteriologists have known that most bacteria develop an outside protein layer consisting of thousands of hooked together copies of a single protein.

The structure and function of this so-called S-layer can best be compared to an armor or mail coat. Until now scientists had a very limited understanding of the structure and function of this protective coat, which is rather remarkable, given that some bacteria invest up to a third of their total protein production in its construction.

With the publication of their findings in Nature, VIB researchers Han Remaut and Ekaterina Baranova at the Vrije Universiteit Brussel, together with French and British scientists, have pulled the hitherto unknown S layer out of obscurity. "We succeeded in imaging the structure of the protein coat for one specific bacterium (Geobacillus stearothermophilus) down to its individual atoms," says Han Remaut. "We were also able to determine how the individual proteins attached to each other to form a 2D structure similar to a kind of mail coat from the Middle Ages, but on a molecular scale, of course."

This tour de force required using a combination of technologies, including X-ray equipment and electronic microscopy. The most formidable challenge was converting the proteins into stable crystals. For that part of the research, the scientists used small antibodies, so-called nanobodies. These were able to stabilize the protein crystals so that their structure could be imaged in detail with X-ray diffraction.

Protection from the outside world

"What we see confirms our earlier assumption that the S-layer functions as a protective coat against outside threats, such as viruses or proteins targeting the bacterial cell wall," continues Remaut, "because if the same bacteria are grown in a 'friendly' environment, free of extraneous threats, they do not develop an S-layer. We also saw that there are chinks in the armor which allow for the exchange of nutrients and other useful substances with the outside world."

To what extent the protein coat plays a role in disease processes in humans still needs to be determined by the Brussels researchers. The S-layer they imaged was that of a harmless soil bacterium. Some pathogenic bacteria, such as those that cause anthrax (Bacillus anthracis) or the hospital bug Clostridium difficile, also feature this type of armor. "There are indications that these bacteria use their S-layer for attaching to the cells of the host. But whether the S-layer forms a potential starting point for fighting these bacteria is still unclear," adds Remaut. "That will require more research."

Interface with nanotechnology

Remaut's research is also being followed with interest by chemists, nanotechnologists and material scientists. The 2D-structure and mechanisms underlying the development of the S-layer makes it suitable as a component or as a model for new nanomaterials. In particular, the self-assembly of the S-layer fascinates scientists. "You can compare this self-assembly to a pile of bricks organizing themselves into a perfectly laid wall, but on a nanoscale - one-billionth the size of a common brick," says Remaut. "Such artificial miniature structures could be used, for example, for efficiently delivering active ingredients, such as drugs, to places in the body that are hard to reach."

This is an excellent example of how fundamental biology research can be a source of inspiration for the development of future nanomaterials.

Scientific publication

The research will be published in the leading journal Nature (SbsB structure and lattice reconstruction unveil Ca21 triggered S-layer assembly), Doi 10.1038/nature11155.

####

For more information, please click here

Contacts:
Sooike Stoops

32-924-46611

Copyright © VIB (the Flanders Institute for Biotechnology)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Self Assembly

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Nanomedicine

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Discoveries

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Materials/Metamaterials

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Announcements

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Nanobiotechnology

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic