Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene-control cutting using an atomic force microscope-based nanorobot

This shows graphene cutting results based on a nanorobot.

Credit: ©Science China Press
This shows graphene cutting results based on a nanorobot.

Credit: ©Science China Press

Abstract:
Graphene, a stable two-dimensional structure, has attracted tremendous worldwide attention in recent years because of its unique electronic, physical and mechanical properties as well as its wide range of applications. It has been proven experimentally that the electrical properties of graphene are strongly related to its size, geometry, and edge structure. Therefore, controlling graphene to desired edge structures and shapes is required for its practical application. To date, researchers have explored many graphene patterning methods, such as a catalytic cutting [1-4], SPM(Scanning Probe Microscopy)-based electric field tailoring [5-7], energy beam cutting [8-10] and photocatalytic patterning techniques [11]. The current methods can tailor graphene, however, lack of real-time sensor feedback during patterning and cutting results in an open-loop manufacturing process. This greatly limits the cutting precision of graphene and reduces the efficiency of device manufacture. Therefore, a closed-loop fabrication method using interaction forces as real-time feedback is needed to tailor graphene into desired edge structures and shapes in a controllable manner.

Graphene-control cutting using an atomic force microscope-based nanorobot

PR China | Posted on May 27th, 2012

Professor LIU Lianqing from the State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences and Professor XI Ning from the Department of Electrical and Computer Engineering, Michigan State University undertook the background research to overcome this challenge. Their work, entitled "Graphene Control Cutting Using an Atomic Force Microscope Based NanoRobot", was published in SCIENTIA SINICA Physica, Mechanica & Astronomica. 2012, Vol 42(4). They investigated controlled cutting methods of graphene based on nanoscale force feedback by the introduction of robot perception, drivers and behavior coupled with an atomic force microscope. They found that the cutting forces were related to the cutting direction of the graphene lattice because of the asymmetry of the crystal structure of graphene. This discovery is expected to allow nanoscale forces to be used as real-time feedback to establish a closed-loop mechanism to cut graphene with precise control.

Atomic force microscopy is only a nanoscale observation tool, and its main shortcomings are poor location ability, lack of real-time feedback, and low efficiency. These challenges are solved by the introduction of robotics that is efficient at nanomanipulation. In this article, the relationship between lattice cutting directions and nanocutting forces were studied systematically by rotating the sample under the same cutting conditions (load, cutting velocity, tip, and effective cutting surface of the tip). The experimental results show that the cutting force is related to the lattice cutting direction: the cutting forces vary with cutting direction in the same period with a difference of up to around 209.36 nN.

This article is the first to show that cutting forces vary with lattice cutting directions, which lays an experimental foundation to build a closed-loop fabrication strategy using real-time force as a sensor feedback to control the cutting direction with lattice precision. Combined with existing parallel multi-tip technology, the technique developed in this work will make it possible to fabricate large-scale graphene-based nanodevices at low cost with high efficiency. This research was supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z316), the National Natural Science Foundation of China (Project Nos. 60904095, 51050110445, and 61175103), and the CAS/SAFEA (Chinese Academy of Sciences/State Administration of Foreign Experts Affairs) International Partnership Program for Creative Research Teams.

See the article: Zhang Y, Liu L Q, Xi N, et al. Graphene Control Cutting Using an Atomic Force Microscope Based NanoRobot (In Chinese). SCIENTIA SINICA Physica, Mechanica & Astronomica, 2012, 42(4):358

References

[1] Datta, S S.et al. Crystallographic Etching of Few-Layer Graphene. Nano Lett, 8, 1912-1915 (2008).

[2] Ci, L. et al. Controlled nanocutting of graphene. Nano Research, 1, 116-122 (2008).

[3] Campos, L. C. et al. Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene. Nano Lett, 9, 2600-2604 (2009).

[4] Gao, L. et al. Crystallographic Tailoring of Graphene by Nonmetal SiOx Nanoparticles. J. Am. Chem. Soc, 131, 13934-13936 (2009).

[5] Giesbers, A. J. M. et al. Nanolithography and manipulation of graphene using an atomic force microscope. Sol. St. Comm, 147, 366-369 (2008).

[6] Tapaszto, L., Dobrik, G., Lambin, P. & Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat Nano, 3, 397-401 (2008).

[7] Weng, L., Zhang, L.Y., Chen, Y. P. & Rokhinson L.P. et al. Atomic force microscope local oxidation nanolithography of graphene. Appl. Phys. Lett, 93, 093107 (2008)

[8] Fischbein, M. D. & Drndic, M. Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett, 93, 113107 (2008).

[9] Bell, D. C., Lemme, M. C., Stern, L. A. & Marcus, C. M. Precision cutting and patterning of graphene with helium ions. Nanotechnology, 20, 455301(2009).

[10] Lemme, M. C., Bell, D. C., Williams, J. R. Etching of Graphene Devices with a Helium Ion Beam. ACS Nano, 3, 2674-2676(2009).

[11] Zhang, L.M., et al. Photocatalytic Patterning and Modification of Graphene. J. Am. Chem.Soc. 133, 2706-2713(2011)

####

For more information, please click here

Contacts:
LIU Lianqing

Copyright © Science in China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Graphene/ Graphite

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Molecular Nanotechnology

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

DNA dominos on a chip: Carriers of genetic information packed together on a biochip like in nature August 11th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Discoveries

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Tools

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic