Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene-control cutting using an atomic force microscope-based nanorobot

This shows graphene cutting results based on a nanorobot.

Credit: ©Science China Press
This shows graphene cutting results based on a nanorobot.

Credit: ©Science China Press

Abstract:
Graphene, a stable two-dimensional structure, has attracted tremendous worldwide attention in recent years because of its unique electronic, physical and mechanical properties as well as its wide range of applications. It has been proven experimentally that the electrical properties of graphene are strongly related to its size, geometry, and edge structure. Therefore, controlling graphene to desired edge structures and shapes is required for its practical application. To date, researchers have explored many graphene patterning methods, such as a catalytic cutting [1-4], SPM(Scanning Probe Microscopy)-based electric field tailoring [5-7], energy beam cutting [8-10] and photocatalytic patterning techniques [11]. The current methods can tailor graphene, however, lack of real-time sensor feedback during patterning and cutting results in an open-loop manufacturing process. This greatly limits the cutting precision of graphene and reduces the efficiency of device manufacture. Therefore, a closed-loop fabrication method using interaction forces as real-time feedback is needed to tailor graphene into desired edge structures and shapes in a controllable manner.

Graphene-control cutting using an atomic force microscope-based nanorobot

PR China | Posted on May 27th, 2012

Professor LIU Lianqing from the State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences and Professor XI Ning from the Department of Electrical and Computer Engineering, Michigan State University undertook the background research to overcome this challenge. Their work, entitled "Graphene Control Cutting Using an Atomic Force Microscope Based NanoRobot", was published in SCIENTIA SINICA Physica, Mechanica & Astronomica. 2012, Vol 42(4). They investigated controlled cutting methods of graphene based on nanoscale force feedback by the introduction of robot perception, drivers and behavior coupled with an atomic force microscope. They found that the cutting forces were related to the cutting direction of the graphene lattice because of the asymmetry of the crystal structure of graphene. This discovery is expected to allow nanoscale forces to be used as real-time feedback to establish a closed-loop mechanism to cut graphene with precise control.

Atomic force microscopy is only a nanoscale observation tool, and its main shortcomings are poor location ability, lack of real-time feedback, and low efficiency. These challenges are solved by the introduction of robotics that is efficient at nanomanipulation. In this article, the relationship between lattice cutting directions and nanocutting forces were studied systematically by rotating the sample under the same cutting conditions (load, cutting velocity, tip, and effective cutting surface of the tip). The experimental results show that the cutting force is related to the lattice cutting direction: the cutting forces vary with cutting direction in the same period with a difference of up to around 209.36 nN.

This article is the first to show that cutting forces vary with lattice cutting directions, which lays an experimental foundation to build a closed-loop fabrication strategy using real-time force as a sensor feedback to control the cutting direction with lattice precision. Combined with existing parallel multi-tip technology, the technique developed in this work will make it possible to fabricate large-scale graphene-based nanodevices at low cost with high efficiency. This research was supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z316), the National Natural Science Foundation of China (Project Nos. 60904095, 51050110445, and 61175103), and the CAS/SAFEA (Chinese Academy of Sciences/State Administration of Foreign Experts Affairs) International Partnership Program for Creative Research Teams.

See the article: Zhang Y, Liu L Q, Xi N, et al. Graphene Control Cutting Using an Atomic Force Microscope Based NanoRobot (In Chinese). SCIENTIA SINICA Physica, Mechanica & Astronomica, 2012, 42(4):358

References

[1] Datta, S S.et al. Crystallographic Etching of Few-Layer Graphene. Nano Lett, 8, 1912-1915 (2008).

[2] Ci, L. et al. Controlled nanocutting of graphene. Nano Research, 1, 116-122 (2008).

[3] Campos, L. C. et al. Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene. Nano Lett, 9, 2600-2604 (2009).

[4] Gao, L. et al. Crystallographic Tailoring of Graphene by Nonmetal SiOx Nanoparticles. J. Am. Chem. Soc, 131, 13934-13936 (2009).

[5] Giesbers, A. J. M. et al. Nanolithography and manipulation of graphene using an atomic force microscope. Sol. St. Comm, 147, 366-369 (2008).

[6] Tapaszto, L., Dobrik, G., Lambin, P. & Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat Nano, 3, 397-401 (2008).

[7] Weng, L., Zhang, L.Y., Chen, Y. P. & Rokhinson L.P. et al. Atomic force microscope local oxidation nanolithography of graphene. Appl. Phys. Lett, 93, 093107 (2008)

[8] Fischbein, M. D. & Drndic, M. Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett, 93, 113107 (2008).

[9] Bell, D. C., Lemme, M. C., Stern, L. A. & Marcus, C. M. Precision cutting and patterning of graphene with helium ions. Nanotechnology, 20, 455301(2009).

[10] Lemme, M. C., Bell, D. C., Williams, J. R. Etching of Graphene Devices with a Helium Ion Beam. ACS Nano, 3, 2674-2676(2009).

[11] Zhang, L.M., et al. Photocatalytic Patterning and Modification of Graphene. J. Am. Chem.Soc. 133, 2706-2713(2011)

####

For more information, please click here

Contacts:
LIU Lianqing

Copyright © Science in China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Kalam: versatility personified August 1st, 2015

Graphene

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Stretching the limits on conducting wires July 25th, 2015

More efficient process to produce graphene developed by Ben-Gurion University researchers July 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Kalam: versatility personified August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universitšt Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Molecular Nanotechnology

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Rare form: Novel structures built from DNA emerge July 20th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

$8.5M Grant For Developing Nano Printing Technology: 4-D printing to advance chemistry, materials sciences and defense capabilities June 18th, 2015

Discoveries

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Tools

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Take a trip through the brain July 30th, 2015

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

Nanometrics Announces Upcoming Investor Events July 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project