Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New Nanostructure for Batteries Keeps Going and Going ...

The new double-walled silicon nanotube anode is made by a clever four-step process: Polymer nanofibers (green) are made, then heated (with, and then without, air) until they are reduced to carbon (Image courtesy Hui Wu, Stanford, and Yi Cui)
The new double-walled silicon nanotube anode is made by a clever four-step process: Polymer nanofibers (green) are made, then heated (with, and then without, air) until they are reduced to carbon

(Image courtesy Hui Wu, Stanford, and Yi Cui)

Abstract:
For more than a decade, scientists have tried to improve lithium-based batteries by replacing the graphite in one terminal with silicon, which can store 10 times more charge. But after just a few charge/discharge cycles, the silicon structure would crack and crumble, rendering the battery useless.

New Nanostructure for Batteries Keeps Going and Going ...

Menlo Park, CA | Posted on May 10th, 2012

Now a team led by materials scientist Yi Cui of Stanford and SLAC has found a solution: a cleverly designed double-walled nanostructure that lasts more than 6,000 cycles, far more than needed by electric vehicles or mobile electronics.

"This is a very exciting development toward our goal of creating smaller, lighter and longer-lasting batteries than are available today," Cui said. The results were published March 25 in Nature Nanotechnology.

Lithium-ion batteries are widely used to power devices from electric vehicles to portable electronics because they can store a relatively large amount of energy in a relatively lightweight package. The battery works by controlling the flow of lithium ions through a fluid electrolyte between its two terminals, called the anode and cathode.

The promise - and peril - of using silicon as the anode in these batteries comes from the way the lithium ions bond with the anode during the charging cycle. Up to four lithium ions bind to each of the atoms in a silicon anode - compared to just one for every six carbon atoms in today's graphite anode - which allows it to store much more charge.

However, it also swells the anode to as much as four times its initial volume. What's more, some of the electrolyte reacts with the silicon, coating it and inhibiting further charging. When lithium flows out of the anode during discharge, the anode shrinks back to its original size and the coating cracks, exposing fresh silicon to the electrolyte.

Within just a few cycles, the strain of expansion and contraction, combined with the electrolyte attack, destroys the anode through a process called "decrepitation."

Over the past five years, Cui's group has progressively improved the durability of silicon anodes by making them out of nanowires and then hollow silicon nanoparticles. His latest design consists of a double-walled silicon nanotube coated with a thin layer of silicon oxide, a very tough ceramic material.

This strong outer layer keeps the outside wall of the nanotube from expanding, so it stays intact. Instead, the silicon swells harmlessly into the hollow interior, which is also too small for electrolyte molecules to enter. After the first charging cycle, it operates for more than 6,000 cycles with 85 percent capacity remaining.

Cui said future research is aimed at simplifying the process for making the double-wall silicon nanotubes. Others in his group are developing new high-performance cathodes to combine with the new anode to form a battery with five times the performance of today's lithium-ion technology.

In 2008, Cui founded a company, Amprius, which licensed rights to Stanford's patents for his silicon nanowire anode technology. Its near-term goal is to produce a battery with double the energy density of today's lithium-ion batteries.

####

For more information, please click here

Copyright © SLAC National Accelerator Laboratory,

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Tongfang Global and QD Vision Partner to Bring Wide Color Gamut to Global Television Lines: Color IQTM quantum dots help boost company’s focus on superior color reproduction September 3rd, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

Laboratories

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Major innovation in molecular imaging delivers spatial and spectral info simultaneously: Berkeley Lab scientist invents technique to combine spectroscopy with super-resolution microscopy, enabling new ways to examine cell structures and study diseases August 17th, 2015

Drexel engineers 'sandwich' atomic layers to make new materials for energy storage August 15th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Nanotubes/Buckyballs/Fullerenes

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

$200K Awarded to Develop In Vitro Lung Test for Toxicity of Inhaled Nanomaterials: In Vitro Lung Test Designed to Protect Human Health and Replace Animal Testing September 1st, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Discoveries

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Announcements

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Patents/IP/Tech Transfer/Licensing

An engineered surface unsticks sticky water droplets August 31st, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Revolutionary MIT-Developed Nanotechnology Company Showcases at CAMX in Dallas August 20th, 2015

Energy

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

RUSNANOPRIZE Directorate Announces New Deadline for Nominations Submission – September 11, 2015 September 1st, 2015

Automotive/Transportation

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Lehigh University-DuPont tribology research seeks to reduce wear and waste August 13th, 2015

Flexible dielectric polymer can stand the heat August 6th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

'Diamonds from the sky' approach turns CO2 into valuable products August 19th, 2015

Drexel engineers 'sandwich' atomic layers to make new materials for energy storage August 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic