Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Success of 3D NanoCompass will enable Baolab to create low cost, smart, reconfigurable Inertial Measurement Unit

Abstract:
Baolab Microsystems has announced that it expects to be able to modify the structures that it designed for its 3D NanoCompass™ to build a range of other motion sensors and, ultimately, to create low cost, smart, reconfigurable Inertial Measurement Units (IMUs). These NanoIMUs™ will use Baolab's patented, award winning NanoEMS™ technology to create nanoscale MEMS (Micro Electro Mechanical Systems) within the standard metal structure of a high volume manufactured CMOS wafer.

Success of 3D NanoCompass will enable Baolab to create low cost, smart, reconfigurable Inertial Measurement Unit

Barcelona, Spain | Posted on May 8th, 2012

"We have designed ways to modify the structure that we developed for the 3D NanoCompass so that it can be used to create gyroscopes and accelerometers as well as magnetometers" explained Dave Doyle, Baolab's CEO. "As we have the ability to build combinations of these different types of sensors simultaneously on the same chip along with the associated electronics to provide control and intelligence, we will be able to create the product that the industry is wanting - multi-sensor IMUs that can be activated and configured dynamically as required by the application. The key is that our technology enables us to build MEMS using standard CMOS production techniques so we can make as many as we like of whatever mix of sensors that are required at the same time, integrated with the analog and digital electronics running fusion software to make them smart."

The traditional way of making MEMS sensors requires a different production process to make each type of sensor. Baolab's NanoEMS approach will enable the costs of making smart, multi-sensor IMUs to be slashed dramatically, accelerating the drive to provide ubiquitous multi-sensor awareness into almost any device for enhanced performance and features.

"We have proved that we have solved all the challenges of making MEMS within the CMOS wafer with our production of working 3D NanoCompasses," added Dave Doyle. "We will be introducing a series of nanosensor products as we work our way through the roadmap towards our goal of ultra low cost, smart, multi-sensor NanoIMUs."

####

About Baolab Microsystems
Baolab has developed an innovative technology called NanoEMS™ that enables MEMS to be created inside the CMOS wafer using standard manufacturing techniques. This enables them to be made an order of magnitude smaller than existing techniques of building MEMS on the surface of the wafer and also at a fraction of the cost. Privately owned, Baolab is based in Barcelona, Spain.

NanoIMU, NanoEMS and 3D NanoCompass are trademarks of Baolab Microsystems, S.L.

For more information, please click here

Contacts:
Nigel Robson
+44 1481 233080
Vortex PR



Tel: +34-93-394-17-70

Copyright © Baolab Microsystems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Chip Technology

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Sensors

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project