Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Power generation technology based on piezoelectric nanocomposite materials developed by KAIST

Nanocomposite generator produces electricity.

Credit: KAIST
Nanocomposite generator produces electricity.

Credit: KAIST

Abstract:
The team of Professor Keon Jae Lee (fand.kaist.ac.kr/) from the Department of Materials Science and Engineering, KAIST, has developed new forms of low cost, large-area nanogenerator technology using the piezoelectric ceramic nanoparticles.

Power generation technology based on piezoelectric nanocomposite materials developed by KAIST

Seoul, South Korea | Posted on May 7th, 2012

Piezoelectric effects-based nanogenerator technology that converts existing sources of nonpolluting energies, such as vibrational and mechanical energy from the nature of wind and waves, into infinite electrical energy is drawing immense interest in the next-generation energy harvesting technology. However, previous nanogenerator technologies have limitations such as complicated process, high-cost, and size-related restrictions.

Recently, Professor Lee's research team has developed a nanocomposite-based nanogenerator that successfully overcomes the critical restrictions existed in previous nanogenerators and builds a simple, low-cost, and large-scale self-powered energy system. The team produced a piezoelectric nanocomposite by mixing piezoelectric nanoparticles with carbon-based nanomaterials (carbon nanotubes and reduced graphene oxide) in a polydimethylsiloxane (PDMS) matrix and fabricated the nanocomposite generator by the simple process of spin-casting or bar-coating method.

Professor Zhong Lin Wang from Georgia Institute of Technology, who is the inventor of the nanogenerator, said,

"This exciting result first introduces a nanocomposite material into the self-powered energy system, and therefore it can expand the feasibility of nanogenerator in consumer electronics, ubiquitous sensor networks, and wearable clothes."

The research result was published in the May online issue of the Advanced Materials Wiley journal as a cover paper.

####

For more information, please click here

Contacts:
Lan Yoon

82-423-502-295

Copyright © The Korea Advanced Institute of Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Flexible Electronics

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Study unlocks full potential of 'supermaterial' graphene: Researchers remove silicon contamination from graphene to double its performance November 30th, 2018

Sensors

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Kanazawa University research: Opposite piezoresistant effects of rhenium disulfide in two principle directions June 13th, 2019

Shaking hands with human or robot? Nanotubes make them alike as never before June 6th, 2019

Discoveries

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Materials/Metamaterials

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Experiments show dramatic increase in solar cell output: Method for collecting two electrons from each photon could break through theoretical solar-cell efficiency limit July 5th, 2019

Announcements

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Textiles/Clothing

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

The materials engineers are developing environmentally friendly materials: The materials engineers are developing environmentally friendly materials for producing smart textiles November 2nd, 2018

A bullet-proof heating pad November 2nd, 2018

Eco-friendly waterproof polymer films synthesized using novel method October 31st, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Russian scientists investigate new materials for Li-ion batteries of miniature sensors: Researchers are developing new materials for solid-state thin-film Li-ion batteries for micro and nanodevices May 31st, 2019

Building next gen smart materials with the power of sound May 28th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project