Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Next-Generation Nanoelectronics: A Decade of Progress, Coming Advances

Abstract:
Traditional silicon-based integrated circuits are found in many applications, from large data servers to cars to cell phones. Their widespread integration is due in part to the semiconductor industry's ability to continue to deliver reliable and scalable performance for decades.

Next-Generation Nanoelectronics: A Decade of Progress, Coming Advances

Chicago, IL | Posted on May 3rd, 2012

However, while silicon-based circuits continue to shrink in size in the relentless pursuit of Moore's Law — the prediction that the number of transistors that can fit on an integrated circuit doubles every two years — power consumption is rising rapidly. In addition, conventional silicon electronics do not function well in extreme environments such as high temperatures or radiation.

In an effort to sustain the advance of these devices while curbing power consumption, diverse research communities are looking for hybrid or alternative technologies. Nanoelectromechanical (NEM) switch technology is one option that shows great promise.

"NEM switches consist of a nanostructure (such as a carbon nanotube or nanowire) that deflects mechanically under electrostatic forces to make or break contact with an electrode," said Horacio Espinosa, James N. and Nancy J. Farley Professor in Manufacturing and Entrepreneurship at the McCormick School of Engineering at Northwestern University.

NEM switches, which can be designed to function like a silicon transistor, could be used either in standalone or hybrid NEM-silicon devices. They offer both ultra-low power consumption and a strong tolerance of high temperatures and radiation exposure.

Given their potential, the past decade has seen significant attention to the development of both hybrid and standalone NEM devices. This decade of progress is reviewed by Espinosa's group in the current issue of journal Nature Nanotechnology. Their review provides a comprehensive discussion of the potential of these technologies, as well as the primary challenges associated with adopting them.

For example, one longstanding challenge has been to create arrays of millions of the nanostructures, such as carbon nanotubes, that are used to make these NEM devices. (For perspective, modern silicon electronics can have billions of transistors on a single chip.) The researchers' review describes the methods demonstrated to date to create these arrays, and how they may provide a path to realizing hybrid NEM-CMOS devices on a mass scale.

Similarly, while individual NEM devices show extremely high performance, it has proven difficult so far to make them operate reliably for millions of cycles, which is necessary if they are to be used in consumer electronics. The review details the various modes of failure and describes promising methods for overcoming them.

An example of the advances that facilitate improved robustness of NEM switch technologies is reported in the current issue of Advanced Materials. Here Espinosa and his group show how novel material selection can greatly improve the robustness of both hybrid NEM-CMOS and standalone NEM devices.

"NEM devices with commonly-used metal electrodes often fail by one of a variety of failure modes after only a few actuation cycles," said Owen Loh, a PhD student at Northwestern University and co-author of the paper, currently at Intel.

Simply by replacing the metal electrodes with electrodes made from conductive diamond-like carbon films, the group was able to dramatically improve the number of cycles these devices endure. Switches that originally failed after fewer than 10 cycles now operated for 1 million cycles without failure. This facile yet effective advance may provide a key step toward realizing the NEM devices whose potential is outlined in the recent review.

The work reported in Advanced Materials was a joint collaboration between Northwestern University, the Center for Integrated Nanotechnologies at Sandia National Laboratories, and the Center for Nanoscale Materials at Argonne National Laboratories. Funding was provided by the National Science
Foundation, the Army Research Office, The U.S. Department of Energy, and the Office of Naval Research.

"Ultimately, realizing next-generation hybrid NEM-CMOS devices will enable continued scaling of the electronics that power numerous systems we encounter on a daily basis," Espinosa said. "At the same time, it will require continued push from the engineering, basic sciences, and materials science communities."

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read "Nanoelectromagnetic contact switches" in Nature Nanotechnology:

Read "Carbon-Carbon Contacts for Robust Nanoelectromechanical Switches" in Advanced Materials:

Related News Press

News and information

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Laboratories

Relax, just break it July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

NEMS

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

One string to rule them all April 17th, 2018

Leti Scientists Participating in Sessions on Med Tech, Automotive Technologies, MEMS, Si-photonics and Lithography at SEMICON Europa: Teams also Will Demonstrate Technology Advances in Telecom, Data Fusion, Energy, Silicon Photonics and 3D Integration October 18th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Nanoelectronics

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Discoveries

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Announcements

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Military

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project