Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Next-Generation Nanoelectronics: A Decade of Progress, Coming Advances

Abstract:
Traditional silicon-based integrated circuits are found in many applications, from large data servers to cars to cell phones. Their widespread integration is due in part to the semiconductor industry's ability to continue to deliver reliable and scalable performance for decades.

Next-Generation Nanoelectronics: A Decade of Progress, Coming Advances

Chicago, IL | Posted on May 3rd, 2012

However, while silicon-based circuits continue to shrink in size in the relentless pursuit of Moore's Law the prediction that the number of transistors that can fit on an integrated circuit doubles every two years power consumption is rising rapidly. In addition, conventional silicon electronics do not function well in extreme environments such as high temperatures or radiation.

In an effort to sustain the advance of these devices while curbing power consumption, diverse research communities are looking for hybrid or alternative technologies. Nanoelectromechanical (NEM) switch technology is one option that shows great promise.

"NEM switches consist of a nanostructure (such as a carbon nanotube or nanowire) that deflects mechanically under electrostatic forces to make or break contact with an electrode," said Horacio Espinosa, James N. and Nancy J. Farley Professor in Manufacturing and Entrepreneurship at the McCormick School of Engineering at Northwestern University.

NEM switches, which can be designed to function like a silicon transistor, could be used either in standalone or hybrid NEM-silicon devices. They offer both ultra-low power consumption and a strong tolerance of high temperatures and radiation exposure.

Given their potential, the past decade has seen significant attention to the development of both hybrid and standalone NEM devices. This decade of progress is reviewed by Espinosa's group in the current issue of journal Nature Nanotechnology. Their review provides a comprehensive discussion of the potential of these technologies, as well as the primary challenges associated with adopting them.

For example, one longstanding challenge has been to create arrays of millions of the nanostructures, such as carbon nanotubes, that are used to make these NEM devices. (For perspective, modern silicon electronics can have billions of transistors on a single chip.) The researchers' review describes the methods demonstrated to date to create these arrays, and how they may provide a path to realizing hybrid NEM-CMOS devices on a mass scale.

Similarly, while individual NEM devices show extremely high performance, it has proven difficult so far to make them operate reliably for millions of cycles, which is necessary if they are to be used in consumer electronics. The review details the various modes of failure and describes promising methods for overcoming them.

An example of the advances that facilitate improved robustness of NEM switch technologies is reported in the current issue of Advanced Materials. Here Espinosa and his group show how novel material selection can greatly improve the robustness of both hybrid NEM-CMOS and standalone NEM devices.

"NEM devices with commonly-used metal electrodes often fail by one of a variety of failure modes after only a few actuation cycles," said Owen Loh, a PhD student at Northwestern University and co-author of the paper, currently at Intel.

Simply by replacing the metal electrodes with electrodes made from conductive diamond-like carbon films, the group was able to dramatically improve the number of cycles these devices endure. Switches that originally failed after fewer than 10 cycles now operated for 1 million cycles without failure. This facile yet effective advance may provide a key step toward realizing the NEM devices whose potential is outlined in the recent review.

The work reported in Advanced Materials was a joint collaboration between Northwestern University, the Center for Integrated Nanotechnologies at Sandia National Laboratories, and the Center for Nanoscale Materials at Argonne National Laboratories. Funding was provided by the National Science
Foundation, the Army Research Office, The U.S. Department of Energy, and the Office of Naval Research.

"Ultimately, realizing next-generation hybrid NEM-CMOS devices will enable continued scaling of the electronics that power numerous systems we encounter on a daily basis," Espinosa said. "At the same time, it will require continued push from the engineering, basic sciences, and materials science communities."

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read "Nanoelectromagnetic contact switches" in Nature Nanotechnology:

Read "Carbon-Carbon Contacts for Robust Nanoelectromechanical Switches" in Advanced Materials:

Related News Press

News and information

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Laboratories

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

NEMS

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nano-photonics meets nano-mechanics: Controlling on-chip nano-optics by graphene nano-opto-mechanics January 22nd, 2016

Mechanical quanta see the light January 20th, 2016

Nanodevices at one-hundredth the cost: New techniques for building microelectromechanical systems show promise December 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Nanoelectronics

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Discoveries

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Announcements

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Military

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic