Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Next-Generation Nanoelectronics: A Decade of Progress, Coming Advances

Abstract:
Traditional silicon-based integrated circuits are found in many applications, from large data servers to cars to cell phones. Their widespread integration is due in part to the semiconductor industry's ability to continue to deliver reliable and scalable performance for decades.

Next-Generation Nanoelectronics: A Decade of Progress, Coming Advances

Chicago, IL | Posted on May 3rd, 2012

However, while silicon-based circuits continue to shrink in size in the relentless pursuit of Moore's Law — the prediction that the number of transistors that can fit on an integrated circuit doubles every two years — power consumption is rising rapidly. In addition, conventional silicon electronics do not function well in extreme environments such as high temperatures or radiation.

In an effort to sustain the advance of these devices while curbing power consumption, diverse research communities are looking for hybrid or alternative technologies. Nanoelectromechanical (NEM) switch technology is one option that shows great promise.

"NEM switches consist of a nanostructure (such as a carbon nanotube or nanowire) that deflects mechanically under electrostatic forces to make or break contact with an electrode," said Horacio Espinosa, James N. and Nancy J. Farley Professor in Manufacturing and Entrepreneurship at the McCormick School of Engineering at Northwestern University.

NEM switches, which can be designed to function like a silicon transistor, could be used either in standalone or hybrid NEM-silicon devices. They offer both ultra-low power consumption and a strong tolerance of high temperatures and radiation exposure.

Given their potential, the past decade has seen significant attention to the development of both hybrid and standalone NEM devices. This decade of progress is reviewed by Espinosa's group in the current issue of journal Nature Nanotechnology. Their review provides a comprehensive discussion of the potential of these technologies, as well as the primary challenges associated with adopting them.

For example, one longstanding challenge has been to create arrays of millions of the nanostructures, such as carbon nanotubes, that are used to make these NEM devices. (For perspective, modern silicon electronics can have billions of transistors on a single chip.) The researchers' review describes the methods demonstrated to date to create these arrays, and how they may provide a path to realizing hybrid NEM-CMOS devices on a mass scale.

Similarly, while individual NEM devices show extremely high performance, it has proven difficult so far to make them operate reliably for millions of cycles, which is necessary if they are to be used in consumer electronics. The review details the various modes of failure and describes promising methods for overcoming them.

An example of the advances that facilitate improved robustness of NEM switch technologies is reported in the current issue of Advanced Materials. Here Espinosa and his group show how novel material selection can greatly improve the robustness of both hybrid NEM-CMOS and standalone NEM devices.

"NEM devices with commonly-used metal electrodes often fail by one of a variety of failure modes after only a few actuation cycles," said Owen Loh, a PhD student at Northwestern University and co-author of the paper, currently at Intel.

Simply by replacing the metal electrodes with electrodes made from conductive diamond-like carbon films, the group was able to dramatically improve the number of cycles these devices endure. Switches that originally failed after fewer than 10 cycles now operated for 1 million cycles without failure. This facile yet effective advance may provide a key step toward realizing the NEM devices whose potential is outlined in the recent review.

The work reported in Advanced Materials was a joint collaboration between Northwestern University, the Center for Integrated Nanotechnologies at Sandia National Laboratories, and the Center for Nanoscale Materials at Argonne National Laboratories. Funding was provided by the National Science
Foundation, the Army Research Office, The U.S. Department of Energy, and the Office of Naval Research.

"Ultimately, realizing next-generation hybrid NEM-CMOS devices will enable continued scaling of the electronics that power numerous systems we encounter on a daily basis," Espinosa said. "At the same time, it will require continued push from the engineering, basic sciences, and materials science communities."

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read "Nanoelectromagnetic contact switches" in Nature Nanotechnology:

Read "Carbon-Carbon Contacts for Robust Nanoelectromechanical Switches" in Advanced Materials:

Related News Press

News and information

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Laboratories

Major innovation in molecular imaging delivers spatial and spectral info simultaneously: Berkeley Lab scientist invents technique to combine spectroscopy with super-resolution microscopy, enabling new ways to examine cell structures and study diseases August 17th, 2015

Drexel engineers 'sandwich' atomic layers to make new materials for energy storage August 15th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

New ORNL hybrid microscope offers unparalleled capabilities August 10th, 2015

NEMS

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Investigation of Mechanical Behavior of Heterogeneous Nanostructures in Iran July 13th, 2015

Weighing -- and imaging -- molecules one at a time April 28th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Nanoelectronics

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

Discoveries

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Announcements

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Military

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Graphene oxide's secret properties revealed at atomic level: A research team found that graphene oxide's inherent defects give rise to a surprising mechanical property August 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic