Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Self-assembling highly conductive plastic nanofibers

Artist’s impression based on a real atomic force microscopy (AFM) image showing conductive supramolecular fibers trapped between two gold electrodes spaced 100 nm apart. Each plastic fiber is composed of several short fibers and is capable of transporting electrical charges with the same efficiency as a metal. © Graphics: M. Maaloum, ICS (CNRS).
Artist’s impression based on a real atomic force microscopy (AFM) image showing conductive supramolecular fibers trapped between two gold electrodes spaced 100 nm apart. Each plastic fiber is composed of several short fibers and is capable of transporting electrical charges with the same efficiency as a metal. © Graphics: M. Maaloum, ICS (CNRS).

Abstract:
Researchers from CNRS and the Université de Strasbourg, headed by Nicolas Giuseppone (1) and Bernard Doudin (2), have succeeded in making highly conductive plastic fibers that are only several nanometers thick. These nanowires, for which CNRS has filed a patent, "self-assemble" when triggered by a flash of light! Inexpensive and easy to handle, unlike carbon nanotubes (3), they combine the advantages of the two materials currently used to conduct electric current: metals and plastic organic polymers (4). In fact, their remarkable electrical properties are similar to those of metals. In addition, they are light and flexible like plastics, which opens up the possibility of meeting one of the most important challenges of 21st century electronics: miniaturizing components down to the nanometric scale. This work will be published on 22 April 2012 on Nature Chemistry's website. The next step is to demonstrate that these fibers can be industrially integrated within electronic devices such as flexible screens, solar cells, etc.

Self-assembling highly conductive plastic nanofibers

Paris, France | Posted on April 23rd, 2012

In previous work published in 2010 (5), Giuseppone and his colleagues succeeded for the first time in obtaining nanowires. To achieve this feat, they chemically modified "triarylamines", synthetic molecules that have been used for decades by industry in Xerox® photocopying processes. Much to their surprise, they observed that in light and in solution, their new molecules stacked up spontaneously in a regular manner to form miniature fibers. These wires, a few hundred nanometers long (1 nm = 10-9 m, i.e. a billionth of a meter), are made up of what is known as the "supramolecular" assembly of several thousand molecules.

In collaboration with Doudin's team, the researchers then studied the electrical properties of these nanofibers in detail. This time, they placed their molecules in contact with an electronic microcircuit comprising gold electrodes spaced 100 nm apart. They then applied an electric field between these electrodes.

Their first important finding was that, when triggered by a flash of light, the fibers self-assemble solely between the electrodes. The second surprising result was that these structures, which are as light and flexible as plastics, turn out to be capable of transporting extraordinary current densities, above 2.10^6 Amperes per square centimeter (A.cm-2), approaching those of copper wire. In addition, they have very low interface resistance with metals (6) : 10,000 times below that of the best organic polymers.

The researchers now hope to demonstrate that their fibers can be used industrially in miniaturized electronic devices such as flexible screens, solar cells, transistors, printed nanocircuits, etc.

Notes
(1) Institut Charles Sadron (CNRS).
(2) Institut de Physique et Chimie des Matériaux de Strasbourg (CNRS / Université de Strasbourg).
(3) Hollow carbon tubes with a diameter of around one nanometer (1 nm = 10-9 m), displaying outstanding electrical, mechanical and thermal properties, thus opening the way to numerous applications in the microelectronics sector.
(4) Very large organic molecules, in other words of living origin or derived from oil, mainly containing carbon and hydrogen.
(5) The Hierarchical Self-Assembly of Charge Nanocarriers: A Highly Cooperative Process Promoted by Visible Light; Giuseppone, N. et co. Angew. Chem. Int. Ed. 2010, 49, 6974-78
(6) "Force" with which the conductor opposes the flow of current.

Full bibliographic informationBibliography
Light-triggered Self-construction of Supramolecular Organic Nanowires as Metallic Interconnects. Vina Faramarzi, Frédéric Niess, Emilie Moulin, Mounir Maaloum, Jean-François Dayen, Jean-Baptiste Beaufrand, Silvia Zanettini, Bernard Doudin, and Nicolas Giuseppone. Nature Chemistry, On line on 22 April 2012 (DOI: 10.1038/NCHEM.1332)

####

For more information, please click here

Contacts:
Researchers
Nicolas Giuseppone
T +33 (0)3 88 41 41 66


Bernard Doudin
T +33 (0)3 88 10 72 39


Technology transfer specialist
Julien Brohan


CNRS press officer
Priscilla Dacher
T +33 (0)1 44 96 46 06 l


Julien Guillaume
+ 33 1 44 96 51 51

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Display technology/LEDs/SS Lighting/OLEDs

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

QD Vision Named Edison Award Finalist for Innovative Color IQ™ Quantum Dot Technology February 23rd, 2015

JunPus launched high-performance thermal grease for LED February 20th, 2015

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Nanotech Discoveries Move from Lab to Marketplace with Lintec Deal: Licensing Partnership Brings Together University Technology, New Richardson-Based Facility Directed by Alumni February 9th, 2015

Flexible Electronics

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Electronics you can wrap around your finger: A new multiferroric film keeps its electric and magnetic properties even when highly curved, paving the way for potential uses in wearable devices February 10th, 2015

Graphene displays clear prospects for flexible electronics February 2nd, 2015

Self Assembly

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Discoveries

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

Announcements

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Energy

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Solar/Photovoltaic

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Researchers enable solar cells to use more sunlight February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE