Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Self-assembling highly conductive plastic nanofibers

Artist’s impression based on a real atomic force microscopy (AFM) image showing conductive supramolecular fibers trapped between two gold electrodes spaced 100 nm apart. Each plastic fiber is composed of several short fibers and is capable of transporting electrical charges with the same efficiency as a metal. © Graphics: M. Maaloum, ICS (CNRS).
Artist’s impression based on a real atomic force microscopy (AFM) image showing conductive supramolecular fibers trapped between two gold electrodes spaced 100 nm apart. Each plastic fiber is composed of several short fibers and is capable of transporting electrical charges with the same efficiency as a metal. © Graphics: M. Maaloum, ICS (CNRS).

Abstract:
Researchers from CNRS and the Université de Strasbourg, headed by Nicolas Giuseppone (1) and Bernard Doudin (2), have succeeded in making highly conductive plastic fibers that are only several nanometers thick. These nanowires, for which CNRS has filed a patent, "self-assemble" when triggered by a flash of light! Inexpensive and easy to handle, unlike carbon nanotubes (3), they combine the advantages of the two materials currently used to conduct electric current: metals and plastic organic polymers (4). In fact, their remarkable electrical properties are similar to those of metals. In addition, they are light and flexible like plastics, which opens up the possibility of meeting one of the most important challenges of 21st century electronics: miniaturizing components down to the nanometric scale. This work will be published on 22 April 2012 on Nature Chemistry's website. The next step is to demonstrate that these fibers can be industrially integrated within electronic devices such as flexible screens, solar cells, etc.

Self-assembling highly conductive plastic nanofibers

Paris, France | Posted on April 23rd, 2012

In previous work published in 2010 (5), Giuseppone and his colleagues succeeded for the first time in obtaining nanowires. To achieve this feat, they chemically modified "triarylamines", synthetic molecules that have been used for decades by industry in Xerox® photocopying processes. Much to their surprise, they observed that in light and in solution, their new molecules stacked up spontaneously in a regular manner to form miniature fibers. These wires, a few hundred nanometers long (1 nm = 10-9 m, i.e. a billionth of a meter), are made up of what is known as the "supramolecular" assembly of several thousand molecules.

In collaboration with Doudin's team, the researchers then studied the electrical properties of these nanofibers in detail. This time, they placed their molecules in contact with an electronic microcircuit comprising gold electrodes spaced 100 nm apart. They then applied an electric field between these electrodes.

Their first important finding was that, when triggered by a flash of light, the fibers self-assemble solely between the electrodes. The second surprising result was that these structures, which are as light and flexible as plastics, turn out to be capable of transporting extraordinary current densities, above 2.10^6 Amperes per square centimeter (A.cm-2), approaching those of copper wire. In addition, they have very low interface resistance with metals (6) : 10,000 times below that of the best organic polymers.

The researchers now hope to demonstrate that their fibers can be used industrially in miniaturized electronic devices such as flexible screens, solar cells, transistors, printed nanocircuits, etc.

Notes
(1) Institut Charles Sadron (CNRS).
(2) Institut de Physique et Chimie des Matériaux de Strasbourg (CNRS / Université de Strasbourg).
(3) Hollow carbon tubes with a diameter of around one nanometer (1 nm = 10-9 m), displaying outstanding electrical, mechanical and thermal properties, thus opening the way to numerous applications in the microelectronics sector.
(4) Very large organic molecules, in other words of living origin or derived from oil, mainly containing carbon and hydrogen.
(5) The Hierarchical Self-Assembly of Charge Nanocarriers: A Highly Cooperative Process Promoted by Visible Light; Giuseppone, N. et co. Angew. Chem. Int. Ed. 2010, 49, 6974-78
(6) "Force" with which the conductor opposes the flow of current.

Full bibliographic informationBibliography
Light-triggered Self-construction of Supramolecular Organic Nanowires as Metallic Interconnects. Vina Faramarzi, Frédéric Niess, Emilie Moulin, Mounir Maaloum, Jean-François Dayen, Jean-Baptiste Beaufrand, Silvia Zanettini, Bernard Doudin, and Nicolas Giuseppone. Nature Chemistry, On line on 22 April 2012 (DOI: 10.1038/NCHEM.1332)

####

For more information, please click here

Contacts:
Researchers
Nicolas Giuseppone
T +33 (0)3 88 41 41 66


Bernard Doudin
T +33 (0)3 88 10 72 39


Technology transfer specialist
Julien Brohan


CNRS press officer
Priscilla Dacher
T +33 (0)1 44 96 46 06 l


Julien Guillaume
+ 33 1 44 96 51 51

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Flexible Electronics

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

'Rivet graphene' proves its mettle: Rice University shows toughened material is easier to handle, useful for electronics July 14th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Display technology/LEDs/SS Lighting/OLEDs

Researchers develop faster, precise silica coating process for quantum dot nanorods July 12th, 2016

Integrated trio of 2-D nanomaterials unlocks graphene electronics applications: Voltage-controlled oscillator developed at UC Riverside could be used in thousands of applications from computers to wearable technologies July 7th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Self Assembly

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Nanoelectronics

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

Discoveries

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Announcements

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Energy

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Solar/Photovoltaic

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic