Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers discover a new path for light through metal: Novel plasmonic material may merge photonic and electronic technologies

This image shows a) Excitation by light of a surface plasmon-polariton on a thin film of titanium nitride. b) Atomic force microscope image of the surface of titanium nitride film. The mean roughness of the film is 0.5 nm. c) Scanning electron microscopy image of TiN thin film on sapphire. The texture shows multivariant epitaxial (crystalline) growth.

Credit: Alexandra Boltasseva, Purdue University/Optical Materials Express.
This image shows a) Excitation by light of a surface plasmon-polariton on a thin film of titanium nitride. b) Atomic force microscope image of the surface of titanium nitride film. The mean roughness of the film is 0.5 nm. c) Scanning electron microscopy image of TiN thin film on sapphire. The texture shows multivariant epitaxial (crystalline) growth.

Credit: Alexandra Boltasseva, Purdue University/Optical Materials Express.

Abstract:
Helping bridge the gap between photonics and electronics, researchers from Purdue University have coaxed a thin film of titanium nitride into transporting plasmons, tiny electron excitations coupled to light that can direct and manipulate optical signals on the nanoscale. Titanium nitride's addition to the short list of surface-plasmon-supporting materials, formerly comprised only of metals, could point the way to a new class of optoelectronic devices with unprecedented speed and efficiency.

Researchers discover a new path for light through metal: Novel plasmonic material may merge photonic and electronic technologies

Washington, DC | Posted on March 27th, 2012

"We have found that titanium nitride is a promising candidate for an entirely new class of technologies based on plasmonics and metamaterials," said Alexandra Boltasseva, a researcher at Purdue and an author on a paper published today in the Optical Society's (OSA (http://www.osa.org)) open-access journal Optical Materials Express (http://www.opticsinfobase.org/ome). "This is particularly compelling because surface plasmons resolve a basic mismatch between wavelength-scale optical devices and the much smaller components of integrated electronic circuits."

Value of Plasmons

Metals carry electricity with ease, but normally do nothing to transmit light waves. Surface plasmons, unusual light-coupled oscillations that form on the surface of metallic materials, are the exception to that rule. When excited on the surface of metals by light waves of specific frequencies, plasmons are able to retain that same frequency, but with wavelengths that are orders-of-magnitude smaller, cramming visible and near-infrared light into the realm of the nanoscale.

In the world of electronics and optics, that 100-fold contraction is a boon. Circuits that direct the paths of electrons operate on a much smaller scale than optical light waves, so engineers must either rely on small but relatively sluggish electrons for information processing or bulk up to accommodate the zippy photons. Plasmons represent the best of both worlds and are already at the heart of a number of optoelectronic devices. They have not had widespread use, however, due to the dearth of materials that readily generate them and the fact that metals, in most cases, cannot be integrated with semiconductor devices.

Plasmonic Materials

Until now, the best candidates for plasmonic materials were gold and silver. These noble metals, however, are not compatible with standard silicon manufacturing technologies, limiting their use in commercial products. Silver is the metal with the best optical and surface plasmon properties, but it forms grainy, or semi-continuous, thin films. Silver also easily degrades in air, which causes loss of optical signal, making it a less-attractive material in plasmon technologies.

In an effort to overcome these drawbacks, Boltasseva and her team chose to study titanium nitride—a ceramic material that is commonly used as a barrier metal in microelectronics and to coat metal surfaces such as medical implants or machine tooling parts—because they could manipulate its properties in the manufacturing process. It also could be easily integrated into silicon products, and grown crystal-by-crystal, forming highly uniform, ultrathin films—properties that metals do not share.

To test its plasmonic capabilities, the researchers deposited a very thin, very even film of titanium nitride on a sapphire surface. They were able to confirm that titanium nitride supported the propagation of surface plasmons almost as efficiently as gold. Silver, under perfect conditions, was still more efficient for plasmonic applications, but its acknowledged signal loss limited its practical applications.

To further improve the performance of titanium nitride, the researchers are now looking into a manufacturing method known as molecular beam epitaxy, which would enable them to grow the films and layered structures known as superlattices crystal-by-crystal.

Technologies and Potential Applications

In addition to plasmonics, the researchers also speculate that titanium nitride may have applications in metamaterials, which are engineered materials that can be tailored for almost any application because of their extraordinary response to electromagnetic, acoustic, and thermal waves. Recently proposed applications of metamaterials include invisibility cloaks, optical black holes, nanoscale optics, data storage, and quantum information processing.

The search for alternatives to noble metals with improved optical properties, easier fabrication and integration capabilities could ultimately lead to real-life applications for plasmonics and metamaterials.

"Plasmonics is an important technology for nanoscale optical circuits, sensing, and data storage because it can focus light down to nanoscale," notes Boltasseva. "Titanium nitride is a promising candidate in the near-infrared and visible wavelength ranges. Unlike gold and silver, titanium nitride is compatible with standard semiconductor manufacturing technology and provides many advantages in its nanofabrication and integration."

According to the researchers, titanium nitride-based devices could provide nearly the same performance for some plasmonic applications. While noble metals like silver would still be the best choice for specific applications like negative index metamaterials, titanium nitride could outperform noble metals in other metamaterial and transformation optics devices, such as those based on hyperbolic metamaterials.

####

About Optical Society of America
Uniting more than 130,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

About Optical Materials Express

Optical Materials Express (OMEx) is OSA's newest peer-reviewed, open-access journal focusing on the synthesis, processing and characterization of materials for applications in optics and photonics. OMEx, which launched in April 2011, primarily emphasizes advances in novel optical materials, their properties, modeling, synthesis and fabrication techniques; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. For more information, visit www.OpticsInfoBase.org/OMEx.

For more information, please click here

Contacts:
Angela Stark

202-416-1443

Copyright © Optical Society of America

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: "Titanium nitride as a plasmonic material for visible and near-infrared wavelengths," Naik et al., Optical Materials Express, Vol. Vol. 2, Issue 4, pp. 478-489 (2012):

Related News Press

News and information

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Thin films

Electrospray solves longstanding problem in Langmuir-Blodgett assembly: The electrospray spreads water-soluble solvents on water while minimizing mixing August 20th, 2015

Scientists achieve major breakthrough in thin-film magnetism August 17th, 2015

Rice, Penn State open center for 2-D coatings: National Science Foundation selects universities to develop atom-thin materials with industry partners August 13th, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Memory Technology

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Superlattice design realizes elusive multiferroic properties: New design sandwiches a polar metallic oxide between an insulating material August 23rd, 2015

High-precision control of nanoparticles for digital applications August 19th, 2015

Scientists achieve major breakthrough in thin-film magnetism August 17th, 2015

Discoveries

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Materials/Metamaterials

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Announcements

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Photonics/Optics/Lasers

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic