Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Diatom biosensor could shine light on future nanomaterials: Discovery could lead to new methods for environmental remediation and speeding up chemical reactions

A side and overhead view of the microscopic marine diatom Thalassiosira pseudonana. PNNL scientists used this species to develop a fluorescent biosensor that changes its glow in the presence of the sugar ribose.
Photo courtesy of Nils Kroger, Universitat Regensburg.
A side and overhead view of the microscopic marine diatom Thalassiosira pseudonana. PNNL scientists used this species to develop a fluorescent biosensor that changes its glow in the presence of the sugar ribose.

Photo courtesy of Nils Kroger, Universitat Regensburg.

Abstract:
A glow coming from the glassy shell of microscopic marine algae called diatoms could someday help us detect chemicals and other substances in water samples. And the fact that this diatom can glow in response to an external substance could also help researchers develop a variety of new, diatom-inspired nanomaterials that could solve problems in sensing, catalysis and environmental remediation.

Diatom biosensor could shine light on future nanomaterials: Discovery could lead to new methods for environmental remediation and speeding up chemical reactions

Sequim, WA | Posted on March 22nd, 2012

Fluorescence is the key characteristic of a new biosensor developed by researchers at the Department of Energy's Pacific Northwest National Laboratory. The biosensor, described in a paper published this week in the scientific journal PLoS ONE, includes fluorescent proteins embedded in a diatom shell that alter their glow when they are exposed to a particular substance.

"Like tiny glass sculptures, the diverse silica shells of diatoms have long intrigued scientists," said lead author and molecular biologist Kate Marshall, who works out of PNNL's Marine Sciences Laboratory in Sequim, Wash. "And the way our biosensor works could make diatoms even more attractive to scientists because it could pave the way for the development of novel, synthetic silica materials."

Diatoms are perhaps best known as the tiny algae that make up the bulk of phytoplankton, the plant base of the marine food chain that feeds the ocean's creatures. But materials scientists are fascinated by diatoms for another reason: the intricate, highly-ordered patterns that make up their microscopic shells, which are mostly made of silica. Researchers are looking at these minuscule glass cages to solve problems in a number of areas, including sensing, catalysis and environmental remediation.

PNNL Laboratory Fellow and corresponding author Guri Roesijadi found inspiration for this biosensor in previous work by other researchers, who showed it's possible to insert proteins in diatom shells through genetic engineering. Using that work as a starting point, Roesijadi, Marshall and their PNNL colleagues aimed to use fluorescent proteins to turn diatoms into a biosensor. They specifically aimed to create a reagent-less biosensor, meaning one that detects a target substance on its own and without depending on another chemical or substance.

Well-equipped diatom

As a test case, the PNNL team inserted genes for their biosensor into Thalassiosira pseudonana, a well-studied marine diatom whose shell resembles a hatbox. The new genes allowed the diatoms to produce a protein that is the biosensor.

At the heart of the biosensor is the ribose-binding protein, which, as the name suggests, attaches to the sugar ribose. Each ribose-binding protein is then flanked by two other proteins — one that glows blue and another that glows yellow. This three-protein complex attaches to the silica shell while the diatom grows.

In the absence of ribose, the two fluorescent proteins sit close to one another. They're close enough that the energy in the blue protein's fluorescence is easily handed off, or transferred, to the neighboring yellow protein. This process, called fluorescence resonance energy transfer, or FRET, is akin to the blue protein shining a flashlight at the yellow protein, which then glows yellow.

But when ribose binds to the diatom, the ribose-binding protein changes its shape. This moves the blue and yellow fluorescent proteins apart in the process, and the amount of light energy that the blue protein shines on the yellow protein declines. This causes the biosensor to display more blue light.

Microscopic light show

Regardless of whether or not ribose is bound to the diatom's biosensor, the biosensor always emits some blue or yellow glow when it's exposed to energy under a microscope. But the key difference is how much of each kind of light is displayed.

The PNNL team distinguished between light from the two proteins with a fluorescence microscope that was equipped with a photon sensor. The sensor allowed them to measure the intensities of the unique wavelengths of light given off by each of the fluorescent proteins. By calculating the ratio of the two wavelengths, they could determine if the diatom biosensor was exposed to ribose, and how much of ribose was present.

The team also succeeded in making the biosensor work with the shell alone, after it was removed from the living diatom. Removing the living diatom provides researchers greater flexibility in how and where the silica biosensor can be used. The Office of Naval Research, which funded the research, believes biosensors based on modifying a diatom's silica shell may prove useful for detecting threats such as explosives in the marine environment.

"With this research, we've made our important first steps to show it's possible to genetically engineer organisms such as diatoms to create advanced materials for numerous applications," Marshall said.

Co-authors on the paper include scientists at EMSL, DOE's Environmental Molecular Sciences Laboratory at PNNL's Richland, Wash., campus. They used EMSL's mass spectrometry capabilities to verify the team had the correct ribose-binding and fluorescent proteins before adding them to the diatoms.

####

About Pacific Northwest National Laborator
Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. PNNL employs 4,700 staff, has an annual budget of nearly $1.1 billion, and has been managed for the U.S. Department of Energy by Ohio-based Battelle since the laboratory's inception in 1965.

EMSL, the Environmental Molecular Sciences Laboratory, is a national scientific user facility sponsored by the Department of Energy's Office of Science. Located at Pacific Northwest National Laboratory in Richland, Wash., EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. Its integrated computational and experimental resources enable researchers to realize important scientific insights and create new technologies.

For more information, please click here

Contacts:
Franny White
PNNL
(509) 375-6904

Copyright © Pacific Northwest National Laborator

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

REFERENCE: Kathryn E. Marshall, Errol W. Robinson, Shawna M. Hengel, Liljana Pasa-Tolic, Guritno Roesijadi, "FRET Imaging of Diatoms Expressing a Biosilica-Localized Ribose Sensor," PLoS ONE, March 21, 2012, DOI: 10.1371/journal.pone.0033771:

Related News Press

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Military

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project