Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Crann researchers develop new material that could transform flat screen TV and solar cell technology

Abstract:
Researchers at CRANN, the Science Foundation Ireland funded nanoscience institute based in Trinity College Dublin (TCD), have discovered a new material that could transform the quality, lifespan and efficiency of flat screen computers, televisions and other devices. The research team was led by Prof Igor Shvets, a CRANN Principal Investigator who has successfully launched and sold two spin out companies from TCD and who is involved in the Spirit of Ireland energy project. A patent application protecting the new material was filed by TCD.

Crann researchers develop new material that could transform flat screen TV and solar cell technology

Dublin, Ireland | Posted on March 21st, 2012

Commenting on the research, Prof Igor Shvets said, "This is an exciting development with a range of applications and we are hopeful this initial research will attract commercial interest in order to explore its industrial use. The new material could lead to innovations such as window-integrated flat screens and to increase the efficiency of certain solar cells, thus significantly impacting on the take-up of solar cells, which can help us to reduce carbon emissions."

Commenting on the research, Dr. Diarmuid O'Brien, Executive Director of CRANN said, "Ireland is one of the leading countries in the world for nanoscience research, a discipline which is closely linked with technology improvements. We are working with leading companies such as Intel and HP in this sphere and helping them to improve their products using our innovative research methods. This new material could be of real significance to our industry partners. I look forward to seeing Professor Shvets and his team develop this research further and realising its commercial potential."

Devices that the new material could be used with such as solar cells, flat screen TVs, computer monitors, LEDs all utilise materials that can conduct electricity and at the same time are see-through. These devices currently use transparent conducting oxides, which are a good compromise between electrical conductivity and optical transparency. They all have one fundamental limitation: they all conduct electricity through the movement of electrons. Such materials are referred to as n-type transparent conducting oxides. Electricity can also be conducted through as p-type materials. Modern day electronics make use of n-type and p-type materials. The lack of good quality p-type transparent conducting oxides, however, led the research team to develop a new material - a p-type transparent conducting oxide.

Professor Shvets' research was recently published in the international science publication, Applied Physics Letters.
*"Magnesium, nitrogen codoped Cr2O3: A p-type transparent conducting oxide", E. Arca, K. Fleischer, I. V. Shvets, Applied Physics Letters 99, 111910 (2011).

####

For more information, please click here

Contacts:
College Green, Dublin 2
Central Switchboard: +353 1 896 1000.

Copyright © Trinity College Dublin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Patents/IP/Tech Transfer/Licensing

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

Therapeutic Solutions International Licenses Dexosome Clinical Stage Cancer Immunotherapy Product From Gustave Roussy European Cancer Centre: FDA Cleared Immuno-Oncology Technology to Resume Clinical Development for Solid Tumor Patients January 27th, 2016

Energy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Solar/Photovoltaic

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic