Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Crann researchers develop new material that could transform flat screen TV and solar cell technology

Abstract:
Researchers at CRANN, the Science Foundation Ireland funded nanoscience institute based in Trinity College Dublin (TCD), have discovered a new material that could transform the quality, lifespan and efficiency of flat screen computers, televisions and other devices. The research team was led by Prof Igor Shvets, a CRANN Principal Investigator who has successfully launched and sold two spin out companies from TCD and who is involved in the Spirit of Ireland energy project. A patent application protecting the new material was filed by TCD.

Crann researchers develop new material that could transform flat screen TV and solar cell technology

Dublin, Ireland | Posted on March 21st, 2012

Commenting on the research, Prof Igor Shvets said, "This is an exciting development with a range of applications and we are hopeful this initial research will attract commercial interest in order to explore its industrial use. The new material could lead to innovations such as window-integrated flat screens and to increase the efficiency of certain solar cells, thus significantly impacting on the take-up of solar cells, which can help us to reduce carbon emissions."

Commenting on the research, Dr. Diarmuid O'Brien, Executive Director of CRANN said, "Ireland is one of the leading countries in the world for nanoscience research, a discipline which is closely linked with technology improvements. We are working with leading companies such as Intel and HP in this sphere and helping them to improve their products using our innovative research methods. This new material could be of real significance to our industry partners. I look forward to seeing Professor Shvets and his team develop this research further and realising its commercial potential."

Devices that the new material could be used with such as solar cells, flat screen TVs, computer monitors, LEDs all utilise materials that can conduct electricity and at the same time are see-through. These devices currently use transparent conducting oxides, which are a good compromise between electrical conductivity and optical transparency. They all have one fundamental limitation: they all conduct electricity through the movement of electrons. Such materials are referred to as n-type transparent conducting oxides. Electricity can also be conducted through as p-type materials. Modern day electronics make use of n-type and p-type materials. The lack of good quality p-type transparent conducting oxides, however, led the research team to develop a new material - a p-type transparent conducting oxide.

Professor Shvets' research was recently published in the international science publication, Applied Physics Letters.
*"Magnesium, nitrogen codoped Cr2O3: A p-type transparent conducting oxide", E. Arca, K. Fleischer, I. V. Shvets, Applied Physics Letters 99, 111910 (2011).

####

For more information, please click here

Contacts:
College Green, Dublin 2
Central Switchboard: +353 1 896 1000.

Copyright © Trinity College Dublin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Discoveries

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Announcements

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Patents/IP/Tech Transfer/Licensing

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Starpharma initiates new DEPô drug delivery program with AstraZeneca July 27th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic