Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nerve cells grow on nanocellulose

Nerve cells growing on a three-dimensional nanocellulose scaffold. One of the applications the research group would like to study is destruction of synapses between nerve cells, which is one of the earliest signs of Alzheimer’s disease. Synapses are the connections between nerve cells. In the image, the functioning synapses are yellow and the red spots show where synapses have been destroyed.
 Illustration: Philip Krantz
Nerve cells growing on a three-dimensional nanocellulose scaffold. One of the applications the research group would like to study is destruction of synapses between nerve cells, which is one of the earliest signs of Alzheimer’s disease. Synapses are the connections between nerve cells. In the image, the functioning synapses are yellow and the red spots show where synapses have been destroyed.

Illustration: Philip Krantz

Abstract:
Researchers from Chalmers and the University of Gothenburg have shown that nanocellulose stimulates the formation of neural networks. This is the first step toward creating a three-dimensional model of the brain. Such a model could elevate brain research to totally new levels, with regard to Alzheimer's disease and Parkinson's disease, for example.

Nerve cells grow on nanocellulose

Gothenburg, Sweden | Posted on March 20th, 2012

Over a period of two years the research group has been trying to get human nerve cells to grow on nanocellulose.

"This has been a great challenge," says Paul Gatenholm, Professor of Biopolymer Technology at Chalmers.‟Until recently the cells were dying after a while, since we weren't able to get them to adhere to the scaffold. But after many experiments we discovered a method to get them to attach to the scaffold by making it more positively charged. Now we have a stable method for cultivating nerve cells on nanocellulose."

When the nerve cells finally attached to the scaffold they began to develop and generate contacts with one another, so-called synapses. A neural network of hundreds of cells was produced. The researchers can now use electrical impulses and chemical signal substances to generate nerve impulses, that spread through the network in much the same way as they do in the brain. They can also study how nerve cells react with other molecules, such as pharmaceuticals.

The researchers are trying to develop ‟artificial brains", which may open entirely new possibilities in brain research and health care, and eventually may lead to the development of biocomputers. Initially the group wants to investigate destruction of synapses between nerve cells, which is one of the earliest signs of Alzheimer's disease. For example, they would like to cultivate nerve cells and study how cells react to the patients' spinal fluid.

In the future this method may be useful for testing various pharmaceutical candidates that could slow down the destruction of synapses. In addition, it could provide a better alternative to experiments on animals within the field of brain research in general.

The ability to cultivate nerve cells on nanocellulose is an important step ahead since there are many advantages to the material.

‟Pores can be created in nanocellulose, which allows nerve cells to grow in a three-dimensional matrix. This makes it extra comfortable for the cells and creates a realistic cultivation environment that is more like a real brain compared with a three-dimensional cell cultivation well," says Paul Gatenholm.

Paul Gatenholm says that there are a number of new biomedical applications for nanocellulose. He is currently also leading other projects that use the material, for example a project where researchers are using nanocellulose to develop cartilage to create artificial outer ears. His research group has previously developed artificial blood vessels made of nanocellulose, which are being evaluated in pre-clinical studies.

Research on new application areas for nanocellulose is of major strategic significance for Sweden. Several projects are financed by the Knut and Alice Wallenberg Foundation and being conducted in collaboration between Chalmers and KTH within the Wallenberg Wood Science Center, WWSC.

Facts about nanocellulose:

Nanocellulose is a material that consists of nanosized cellulose fibers. Typical dimensions are widths of 5 to 20 nanometers and lengths of up to 2,000 nanometers. Nanocellulose can be produced by bacteria that spin a close-meshed structure of cellulose fibers. It can also be isolated from wood pulp through processing in a high-pressure homogenizer.

The first medical student has conducted a degree project at Chalmers:

Members of the research group are: Marcus Innala (University of Gothenburg), Volodymyr Kuzmenko (Chalmers), Eric Hanse (University of Gothenburg), Sara Johannesson (Chalmers) and Paul Gatenholm (Chalmers). Marcus Innala is a medical student who presents his degree project on March 19th. This is the first time a medical student has conducted his degree project at Chalmers.

####

About Chalmers University of Technology
Chalmers University of Technology performs research and education in technology, science and architecture, with a sustainable future as overall vision. Chalmers is well-known for providing an effective environment for innovation and has eight Areas of Advance – Built Environment, Energy, Information and Communication Technology, Life Science, Materials Science, Nanoscience and Nanotechnology, Production, and Transportation. Situated in Gothenburg, Sweden, Chalmers has 13,000 students and 2,500 employees.

For more information, please click here

Contacts:
Christian Borg
+46 - (0)31 772 3395


Paul Gatenholm
Biopolymer Technology
Chalmers University of Technology
+46 31-772 3407
+46 707-535750

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The results will be presented at the American Chemical Society Meeting in San Diego, 25 March:

Read more about artificial outer ears:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Brain-Computer Interfaces

Developing nanoprobes to detect neurotransmitters in the brain: Researchers synthesize fluorescent molecularly imprinted polymer nanoparticles to sense small neurotransmitter molecules and understand how they govern brain activity March 3rd, 2023

Taking salt out of the water equation October 7th, 2022

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project