Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Biodegradable Transistors -- Made from Us: Award-winning TAU research uses self-assembling blood, milk, and mucus proteins to build next generation technology

Abstract:
Silicon, a semi-conducting element, is the basis of most modern technology, including cellular phones and computers. But according to Tel Aviv University researchers, this material is quickly becoming outdated in an industry producing ever-smaller products that are less harmful to the environment.

Biodegradable Transistors -- Made from Us: Award-winning TAU research uses self-assembling blood, milk, and mucus proteins to build next generation technology

New York, NY | Posted on March 7th, 2012

Now, a team including Ph.D. students Elad Mentovich and Netta Hendler of TAU's Department of Chemistry and The Center for Nanoscience and Nanotechnology, with supervisor Dr. Shachar Richter and in collaboration with Prof. Michael Gozin and his Ph.D. student Bogdan Belgorodsky, has brought together cutting-edge techniques from multiple fields of science to create protein-based transistors semi-conductors used to power electronic devices from organic materials found in the human body. They could become the basis of a new generation of nano-sized technologies that are both flexible and biodegradable.

Working with blood, milk, and mucus proteins which have the ability to self-assemble into a semi-conducting film, the researchers have already succeeded in taking the first step towards biodegradable display screens, and they aim to use this method to develop entire electronic devices. Their research, which has appeared in the journals Nano Letters and Advanced Materials, recently received a silver award at the Materials Research Society Graduate Student Awards in Boston, MA.

Building the best transistor from the bottom up

One of the challenges of using silicon as a semi-conductor is that a transistor must be created with a "top down" approach. Manufacturers start with a sheet of silicon and carve it into the shape that is needed, like carving a sculpture out of a rock. This method limits the capabilities of transistors when it comes to factors such as size and flexibility.

The TAU researchers turned to biology and chemistry for a different approach to building the ideal transistor. When they appled various combinations of blood, milk, and mucus proteins to any base material, the molecules self-assembled to create a semi-conducting film on a nano-scale. In the case of blood protein, for example, the film is approximately four nanometers high. The current technology in use now is 18 nanometers, says Mentovich.

Together, the three different kinds of proteins create a complete circuit with electronic and optical capabilities, each bringing something unique to the table. Blood protein has the ability to absorb oxygen, Mentovich says, which permits the "doping" of semi-conductors with specific chemicals in order to create specific technological properties. Milk proteins, known for their strength in difficult environments, form the fibers which are the building blocks of the transistors, while the mucosal proteins have the ability to keep red, green and, blue fluorescent dyes separate, together creating the white light emission that is necessary for advanced optics.

Overall, the natural abilities of each protein give the researchers "unique control" over the resulting organic transistor, allowing adjustments for conductivity, memory storage, and fluorescence among other characteristics.

A new era of technology

Technology is now shifting from a silicon era to a carbon era, notes Mentovich, and this new type of transistor could play a big role. Transistors built from these proteins will be ideal for smaller, flexible devices that are made out of plastic rather than silicon, which exists in wafer form that would shatter like glass if bent. The breakthrough could lead to a new range of flexible technologies, such as screens, cell phones and tablets, biosensors, and microprocessor chips.

Just as significant, because the researchers are using natural proteins to build their transistor, the products they create will be biodegradable. It's a far more environmentally friendly technology that addresses the growing problem of electronic waste, which is overflowing landfills worldwide.

####

For more information, please click here

Contacts:
George Hunka

212-742-9070

Copyright © American Friends of Tel Aviv University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Display technology/LEDs/SS Lighting/OLEDs

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Miniscule amounts of impurities in vacuum greatly affecting OLED lifetime December 30th, 2016

Flexible Electronics

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Chip Technology

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Memory Technology

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

New material with ferroelectricity and ferromagnetism may lead to better computer memory December 21st, 2016

Characterization of magnetic nanovortices simplified December 21st, 2016

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

Self Assembly

Self-assembling particles brighten future of LED lighting January 18th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Researchers fabricate high performance Cu(OH)2 supercapacitor electrodes December 29th, 2016

Sensors

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Discoveries

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Announcements

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Photonics/Optics/Lasers

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project