Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanofiber Breakthrough Holds Promise for Medicine and Microprocessors

Abstract:
A new method for creating nanofibers made of proteins, developed by researchers at Polytechnic Institute of New York University (NYU-Poly), promises to greatly improve drug delivery methods for the treatment of cancers, heart disorders and Alzheimer's disease, as well as aid in the regeneration of human tissue, bone and cartilage.

Nanofiber Breakthrough Holds Promise for Medicine and Microprocessors

Brooklyn, NY | Posted on February 29th, 2012

In addition, applied differently, this same development could point the way to even tinier and more powerful microprocessors for future generations of computers and consumer electronics devices.

The details are spelled out in an article titled "Effects of Divalent Metals on Nanoscopic Fiber Formation and Small Molecule Recognition of Helical Proteins," which appears online in Advanced Functional Materials. Author Susheel K. Gunasekar, a doctoral student in NYU-Poly's Department of Chemical and Biological Sciences, was the primary researcher, and is a student of co-author Jin Montclare, assistant professor and head of the department's Protein Engineering and Molecular Design Lab, where the underlying research was primarily conducted. Also involved were co-authors Luona Anjia, a graduate student, and Professor Hiroshi Matsui, both of the Department of Chemistry and Biochemistry at Hunter College (The City University of New York), where secondary research was conducted.

Yet all of this almost never emerged, says Professor Montclare, who explains that it was sheer "serendipity" -- a chance observation made by Gunasekar two years ago -- that inspired the team's research and led to its significant findings.

During an experiment that involved studying certain cylinder-shaped proteins derived from cartilage oligomeric matrix protein (COMP, found predominantly in human cartilage), Gunasekar noticed that in high concentrations, these alpha helical coiled-coil proteins spontaneously came together and self-assembled into nanofibers. It was a surprising outcome, Montclare says, because COMP was not known to form fibers at all. "We were really excited," she recalls. "So we decided to do a series of experiments to see if we could control the fiber formation, and also control its binding to small molecules, which would be housed within the protein's cylinder."

Of special interest were molecules of curcumin, an ingredient in dietary supplements used to combat Alzheimer's disease, cancers and heart disorders.

By adding a set of metal-recognizing amino acids to the coiled-coil protein, the NYU-Poly team succeeded, finding that the nanofibers alter their shapes upon addition of metals such as zinc and nickel to the protein. Moreover, the addition of zinc fortified the nanofibers, enabling them to hold more curcumin, while the addition of nickel transformed the fibers into clumped mats, triggering the release of the drug molecule.

Next, Montclare says, the researchers plan to experiment with creating scaffolds of nanofibers that can be used to induce the regeneration of bone and cartilage (via embedded vitamin D) or human stem cells (via embedded vitamin A).

Later, it may even be possible to apply this organic, protein-based method for creating nanofibers to the world of computers and consumer electronics, Montclare says -- producing nanoscale gold threads for use as circuits in computer chips by first creating the nanofibers and then guiding that metal to them.

Ultimately, Montclare says, the researchers would like the fruits of their discovery -- such therapeutic nanofibers and metallic nanowires -- to be adopted by pharmaceutical companies and microprocessor makers alike.

Funding for this NYU-Poly research was provided by the U.S. Air Force Office of Scientific Research, the U.S. Army Research Office, the U.S. Department of Energy and the National Science Foundation.

####

About Polytechnic Institute of New York University
Polytechnic Institute of New York University (formerly Polytechnic University), an affiliate of New York University, is a comprehensive school of engineering, applied sciences, technology and research, and is rooted in a 158-year tradition of invention, innovation and entrepreneurship: i2e. The institution, founded in 1854, is the nationís second-oldest private engineering school. In addition to its main campus in New York City at MetroTech Center in downtown Brooklyn, it also offers programs at sites throughout the region and around the globe. Globally, NYU-Poly has programs in Israel, China and is an integral part of NYU's campus in Abu Dhabi.

For more information, please click here

Contacts:
Kathleen Hamilton

718-260-3792

Copyright © Polytechnic Institute of New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Chip Technology

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Nanotubes/Buckyballs/Fullerenes

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Military

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Nanobiotechnology

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic