Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanofiber Breakthrough Holds Promise for Medicine and Microprocessors

Abstract:
A new method for creating nanofibers made of proteins, developed by researchers at Polytechnic Institute of New York University (NYU-Poly), promises to greatly improve drug delivery methods for the treatment of cancers, heart disorders and Alzheimer's disease, as well as aid in the regeneration of human tissue, bone and cartilage.

Nanofiber Breakthrough Holds Promise for Medicine and Microprocessors

Brooklyn, NY | Posted on February 29th, 2012

In addition, applied differently, this same development could point the way to even tinier and more powerful microprocessors for future generations of computers and consumer electronics devices.

The details are spelled out in an article titled "Effects of Divalent Metals on Nanoscopic Fiber Formation and Small Molecule Recognition of Helical Proteins," which appears online in Advanced Functional Materials. Author Susheel K. Gunasekar, a doctoral student in NYU-Poly's Department of Chemical and Biological Sciences, was the primary researcher, and is a student of co-author Jin Montclare, assistant professor and head of the department's Protein Engineering and Molecular Design Lab, where the underlying research was primarily conducted. Also involved were co-authors Luona Anjia, a graduate student, and Professor Hiroshi Matsui, both of the Department of Chemistry and Biochemistry at Hunter College (The City University of New York), where secondary research was conducted.

Yet all of this almost never emerged, says Professor Montclare, who explains that it was sheer "serendipity" -- a chance observation made by Gunasekar two years ago -- that inspired the team's research and led to its significant findings.

During an experiment that involved studying certain cylinder-shaped proteins derived from cartilage oligomeric matrix protein (COMP, found predominantly in human cartilage), Gunasekar noticed that in high concentrations, these alpha helical coiled-coil proteins spontaneously came together and self-assembled into nanofibers. It was a surprising outcome, Montclare says, because COMP was not known to form fibers at all. "We were really excited," she recalls. "So we decided to do a series of experiments to see if we could control the fiber formation, and also control its binding to small molecules, which would be housed within the protein's cylinder."

Of special interest were molecules of curcumin, an ingredient in dietary supplements used to combat Alzheimer's disease, cancers and heart disorders.

By adding a set of metal-recognizing amino acids to the coiled-coil protein, the NYU-Poly team succeeded, finding that the nanofibers alter their shapes upon addition of metals such as zinc and nickel to the protein. Moreover, the addition of zinc fortified the nanofibers, enabling them to hold more curcumin, while the addition of nickel transformed the fibers into clumped mats, triggering the release of the drug molecule.

Next, Montclare says, the researchers plan to experiment with creating scaffolds of nanofibers that can be used to induce the regeneration of bone and cartilage (via embedded vitamin D) or human stem cells (via embedded vitamin A).

Later, it may even be possible to apply this organic, protein-based method for creating nanofibers to the world of computers and consumer electronics, Montclare says -- producing nanoscale gold threads for use as circuits in computer chips by first creating the nanofibers and then guiding that metal to them.

Ultimately, Montclare says, the researchers would like the fruits of their discovery -- such therapeutic nanofibers and metallic nanowires -- to be adopted by pharmaceutical companies and microprocessor makers alike.

Funding for this NYU-Poly research was provided by the U.S. Air Force Office of Scientific Research, the U.S. Army Research Office, the U.S. Department of Energy and the National Science Foundation.

####

About Polytechnic Institute of New York University
Polytechnic Institute of New York University (formerly Polytechnic University), an affiliate of New York University, is a comprehensive school of engineering, applied sciences, technology and research, and is rooted in a 158-year tradition of invention, innovation and entrepreneurship: i2e. The institution, founded in 1854, is the nation’s second-oldest private engineering school. In addition to its main campus in New York City at MetroTech Center in downtown Brooklyn, it also offers programs at sites throughout the region and around the globe. Globally, NYU-Poly has programs in Israel, China and is an integral part of NYU's campus in Abu Dhabi.

For more information, please click here

Contacts:
Kathleen Hamilton

718-260-3792

Copyright © Polytechnic Institute of New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Chip Technology

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Nanotubes/Buckyballs/Fullerenes

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Discoveries

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Announcements

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Military

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Nanobiotechnology

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project