Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanofiber Breakthrough Holds Promise for Medicine and Microprocessors

Abstract:
A new method for creating nanofibers made of proteins, developed by researchers at Polytechnic Institute of New York University (NYU-Poly), promises to greatly improve drug delivery methods for the treatment of cancers, heart disorders and Alzheimer's disease, as well as aid in the regeneration of human tissue, bone and cartilage.

Nanofiber Breakthrough Holds Promise for Medicine and Microprocessors

Brooklyn, NY | Posted on February 29th, 2012

In addition, applied differently, this same development could point the way to even tinier and more powerful microprocessors for future generations of computers and consumer electronics devices.

The details are spelled out in an article titled "Effects of Divalent Metals on Nanoscopic Fiber Formation and Small Molecule Recognition of Helical Proteins," which appears online in Advanced Functional Materials. Author Susheel K. Gunasekar, a doctoral student in NYU-Poly's Department of Chemical and Biological Sciences, was the primary researcher, and is a student of co-author Jin Montclare, assistant professor and head of the department's Protein Engineering and Molecular Design Lab, where the underlying research was primarily conducted. Also involved were co-authors Luona Anjia, a graduate student, and Professor Hiroshi Matsui, both of the Department of Chemistry and Biochemistry at Hunter College (The City University of New York), where secondary research was conducted.

Yet all of this almost never emerged, says Professor Montclare, who explains that it was sheer "serendipity" -- a chance observation made by Gunasekar two years ago -- that inspired the team's research and led to its significant findings.

During an experiment that involved studying certain cylinder-shaped proteins derived from cartilage oligomeric matrix protein (COMP, found predominantly in human cartilage), Gunasekar noticed that in high concentrations, these alpha helical coiled-coil proteins spontaneously came together and self-assembled into nanofibers. It was a surprising outcome, Montclare says, because COMP was not known to form fibers at all. "We were really excited," she recalls. "So we decided to do a series of experiments to see if we could control the fiber formation, and also control its binding to small molecules, which would be housed within the protein's cylinder."

Of special interest were molecules of curcumin, an ingredient in dietary supplements used to combat Alzheimer's disease, cancers and heart disorders.

By adding a set of metal-recognizing amino acids to the coiled-coil protein, the NYU-Poly team succeeded, finding that the nanofibers alter their shapes upon addition of metals such as zinc and nickel to the protein. Moreover, the addition of zinc fortified the nanofibers, enabling them to hold more curcumin, while the addition of nickel transformed the fibers into clumped mats, triggering the release of the drug molecule.

Next, Montclare says, the researchers plan to experiment with creating scaffolds of nanofibers that can be used to induce the regeneration of bone and cartilage (via embedded vitamin D) or human stem cells (via embedded vitamin A).

Later, it may even be possible to apply this organic, protein-based method for creating nanofibers to the world of computers and consumer electronics, Montclare says -- producing nanoscale gold threads for use as circuits in computer chips by first creating the nanofibers and then guiding that metal to them.

Ultimately, Montclare says, the researchers would like the fruits of their discovery -- such therapeutic nanofibers and metallic nanowires -- to be adopted by pharmaceutical companies and microprocessor makers alike.

Funding for this NYU-Poly research was provided by the U.S. Air Force Office of Scientific Research, the U.S. Army Research Office, the U.S. Department of Energy and the National Science Foundation.

####

About Polytechnic Institute of New York University
Polytechnic Institute of New York University (formerly Polytechnic University), an affiliate of New York University, is a comprehensive school of engineering, applied sciences, technology and research, and is rooted in a 158-year tradition of invention, innovation and entrepreneurship: i2e. The institution, founded in 1854, is the nation’s second-oldest private engineering school. In addition to its main campus in New York City at MetroTech Center in downtown Brooklyn, it also offers programs at sites throughout the region and around the globe. Globally, NYU-Poly has programs in Israel, China and is an integral part of NYU's campus in Abu Dhabi.

For more information, please click here

Contacts:
Kathleen Hamilton

718-260-3792

Copyright © Polytechnic Institute of New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Chip Technology

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Nanotubes/Buckyballs/Fullerenes

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Discoveries

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Announcements

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Military

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Nanobiotechnology

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Nanobiotix appoints senior executive from pharmaceutical industry, as Chief Operating Officer: Oncology industry veteran to oversee operations and product commercialization February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project