Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > MIT research: A new twist on nanowires: Technology developed at MIT can control the composition and structure of these tiny wires as they grow.

Abstract:
Nanowires microscopic fibers that can be "grown" in the lab are a hot research topic today, with a variety of potential applications including light-emitting diodes (LEDs) and sensors. Now, a team of MIT researchers has found a way of precisely controlling the width and composition of these tiny strands as they grow, making it possible to grow complex structures that are optimally designed for particular applications.

MIT research: A new twist on nanowires: Technology developed at MIT can control the composition and structure of these tiny wires as they grow.

Cambridge, MA | Posted on February 22nd, 2012

The results are described in a new paper authored by MIT assistant professor of materials science and engineering Silvija Gradečak and her team, published in the journal Nano Letters.

Nanowires have been of great interest because structures with such tiny dimensions typically just a few tens of nanometers, or billionths of a meter, in diameter can have very different properties than the same materials have in their larger form. That's in part because at such minuscule scales, quantum confinement effects based on the behavior of electrons and phonons within the material begin to play a significant role in the material's behavior, which can affect how it conducts electricity and heat or interacts with light.

In addition, because nanowires have an especially large amount of surface area in relation to their volume, they are particularly well-suited for use as sensors, Gradečak says.

Her team was able to control and vary both the size and composition of individual wires as they grew. Nanowires are grown by using "seed" particles, metal nanoparticles that determine the size and composition of the nanowire. By adjusting the amount of gases used in growing the nanowires, Gradečak and her team were able to control the size and composition of the seed particles and, therefore, the nanowires as they grew. "We're able to control both of these properties simultaneously," she says. While the researchers carried out their nanowire-growth experiments with indium nitride and indium gallium nitride, they say the same technique could be applied to a variety of different materials.

These nanowires are far too small to see with the naked eye, but the team was able to observe them using electron microscopy, making adjustments to the growth process based on what they learned about the growth patterns. Using a process called electron tomography, they were able to reconstruct the three-dimensional shape of individual nanoscale wires. In a related study recently published in the journal Nanoscale, the team also used a unique electron-microscopy technique called cathodoluminescence to observe what wavelengths of light are emitted from different regions of individual nanowires.

Precisely structured nanowires could facilitate a new generation of semiconductor devices, Gradečak says. Such control of nanowire geometry and composition could enable devices with better functionality than conventional thin-film devices made of the same materials, she says.

One likely application of the materials developed by Gradečak and her team is in LED light bulbs, which have far greater durability and are more energy-efficient than other lighting alternatives. The most important colors of light to produce from LEDs are in the blue and ultraviolet range; zinc oxide and gallium nitride nanowires produced by the MIT group can potentially produce these colors very efficiently and at low cost, she says.

While LED light bulbs are available today, they are relatively expensive. "For everyday applications, the high cost is a barrier," Gradečak says. One big advantage of this new approach is that it could enable the use of much less expensive substrate materials a major part of the cost of such devices, which today typically use sapphire or silicon carbide substrates. The nanowire devices have the potential to be more efficient as well, she says.

Such nanowires could also find applications in solar-energy collectors for lower-cost solar panels. Being able to control the shape and composition of the wires as they grow could make it possible to produce very efficient collectors: The individual wires form defect-free single crystals, reducing the energy lost due to flaws in the structure of conventional solar cells. And by controlling the exact dimensions of the nanowires, it's possible to control which wavelengths of light they are "tuned" to, either for producing light in an LED or for collecting light in a solar panel.

Complex structures made of nanowires with varying diameters could also be useful in new thermoelectric devices to capture waste heat and turn it into useful electric power. By varying the composition and diameter of the wires along their length, it's possible to produce wires that conduct electricity well but heat poorly a combination that is hard to achieve in most materials, but is key to efficient thermoelectric generating systems.

The nanowires can be produced using tools already in use by the semiconductor industry, so the devices should be relatively easy to gear up for mass production, the team says.

In addition to Gradečak, the Nano Letters paper was co-authored by MIT graduate student Sam Crawford, Sung Keun Lim PhD '11 and researcher Georg Haberfehlner of the research and technology organization CEA-Leti in Grenoble, France. The Nanoscale paper was co-authored by MIT graduate student Xiang Zhou, Megan Brewster PhD '11 and postdoc Ming-Yen Lu. The work was supported by the MIT Center for Excitonics, the U.S. Department of Energy, the MIT-France MISTI program and the National Science Foundation.

Written by David L. Chandler, MIT News Office

####

For more information, please click here

Contacts:
Kimberly Allen

617-253-2702

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Silvija Gradečak:

Department of Materials Science and Engineering:

Gradečak Group:

Related News Press

News and information

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Researchers develop faster, precise silica coating process for quantum dot nanorods July 12th, 2016

Integrated trio of 2-D nanomaterials unlocks graphene electronics applications: Voltage-controlled oscillator developed at UC Riverside could be used in thousands of applications from computers to wearable technologies July 7th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

A new type of quantum bits July 29th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Sensors

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Nanoelectronics

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Discoveries

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Announcements

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Research partnerships

Lonely atoms, happily reunited July 29th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic