Home > Press > Nanotechnology may lead to more energy-efficient electronics
![]() |
| Forests of carbon nanotubes can be grown in various forms. Closer inspection using an electron microscope enables you to see how individual nanotubes hold each other upright. In a transmission electron microscope it is possible to count the number of walls in individual nanotubes. The scale bar is 100 µm, 1 µm and 20 nm.
Credit: Photo: Daniel Dahlin |
Abstract:
Carbon nanotubes and graphene consist of just a couple of layers of carbon atoms, but they are lighter than aluminium, stronger than steel and can bend like spring-coils. Physicist Niklas Lindahl at the University of Gothenburg, Sweden, has been studying the unique properties of the materials, which in future may result in improved electronics and light, strong material.
Nanotechnology could revolutionise the manufacture of new types of materials. Niklas Lindahl has studied carbon nanotubes and graphene, which are tubes and flat sheets consisting of a thin layer of carbon atoms. Their unique properties make them interesting to use in everything from composite materials in bicycles, to electronic computer components.
In his thesis, Niklas Lindahl demonstrates how carbon nanotubes can be made, and their mechanical properties. Under the right conditions, he used a carbonaceous gas to get carbon nanotubes to grow like forests, atom by atom. The "forests" consist of millions of carbon nanotubes that, despite being just a few nanometres in diameter, hold each other upright like stalks in a field of corn. The tubes, which are lighter than aluminium and stronger than steel when stretched, could be bent like spring-coils.
Niklas Lindahl also demonstrates how membranes of graphene can be bent. Despite the fact that the membranes were made up of just a couple of layers of atoms, their bending rigidity could be determined using the same equations as those used to calculate deformations in large steel spheres. Graphene membranes have many uses, including variable frequency generators in mobile phones, and mass sensors with the ability to measure individual atoms.
The thesis also demonstrates how similar graphene membranes can provide more energy-efficient electronics in the future. For example, suspended graphene electrodes can change the current more effectively through carbon nanotube transistors by combining both mechanical and electrical control of the current.
The thesis "Nanoelectromechanical systems from carbon nanotubes and graphene" was successfully defended on 27 January at the University of Gothenburg.
####
For more information, please click here
Contacts:
Niklas Lindahl
46-031-786-9149
Copyright © University of Gothenburg
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Sensors
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Sports
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020
Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||