Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Stanford engineers weld nanowires with light

Abstract:
At the nano level, researchers at Stanford have discovered a new way to weld together meshes of tiny wires. Their work could lead to innovative electronics and solar applications. To succeed, they called upon plasmonics.

Stanford engineers weld nanowires with light

Stanford, CA | Posted on February 6th, 2012

By Andrew Myers

One area of intensive research at the nanoscale is the creation of electrically conductive meshes made of metal nanowires. Promising exceptional electrical throughput, low cost and easy processing, engineers foresee a day when such meshes are common in new generations of touch-screens, video displays, light-emitting diodes and thin-film solar cells.

Standing in the way, however, is a major engineering hurdle: In processing, these delicate meshes must be heated or pressed to unite the crisscross pattern of nanowires that form the mesh, damaging them in the process.

In a paper just published in the journal Nature Materials, a team of engineers at Stanford has demonstrated a promising new nanowire welding technique that harnesses plasmonics to fuse the wires with a simple blast of light.

Plasmonic_welding

Self-limiting

At the heart of the technique is the physics of plasmonics, the interaction of light and metal in which the light flows across the surface of the metal in waves, like water on the beach.

"When two nanowires lay crisscrossed, we know that light will generate plasmon waves at the place where the two nanowires meet, creating a hot spot. The beauty is that the hot spots exist only when the nanowires touch, not after they have fused. The welding stops itself. It's self-limiting," explained Mark Brongersma, an associate professor of materials science engineering at Stanford and an expert in plasmonics. Brongersma is one of the study's senior authors.

"The rest of the wires and, just as importantly, the underlying material are unaffected," noted Michael McGehee, a materials engineer and also senior author of the paper. "This ability to heat with precision greatly increases the control, speed and energy efficiency of nanoscale welding."

In before-and-after electron-microscope images, individual nanowires are visually distinct prior to illumination. They lay atop one another, like fallen trees in the forest. When illuminated, the top nanowire acts like an antenna of sorts, directing the plasmon waves of light into the bottom wire and creating heat that welds the wires together. Post-illumination images show X-like nanowires lying flat against the substrate with fused joints.

Transparency

In addition to making it easier to produce stronger and better performing nanowire meshes, the researchers say that the new technique could open the possibility of mesh electrodes bound to flexible or transparent plastics and polymers.

To demonstrate the possibilities, they applied their mesh on Saran wrap. They sprayed a solution containing silver nanowires in suspension on the plastic and dried it. After illumination, what was left was an ultrathin layer of welded nanowires.

"Then we balled it up like a piece of paper. When we unfurled the wrap, it maintained its electrical properties," said co-author Yi Cui, an associate professor materials science and engineering. "And when you hold it up, it's virtually transparent."

This could lead to inexpensive window coatings that generate solar power while reducing glare for those inside, the researchers said.

"In previous welding techniques that used a hotplate, this would never have been possible," said lead author, Erik C. Garnett, PhD, a post-doctoral scholar in materials science who works with Brongersma, McGehee and Cui. "The Saran wrap would have melted far sooner than the silver, destroying the device instantly."

"There are many possible applications that would not even be possible in older annealing techniques," said Brongersma. "This opens some interesting, simple and large-area processing schemes for electronic devices — solar, LEDs and touch-screen displays, especially."

This research was supported by the Center for Advanced Molecular Photovoltaics (CAMP) at Stanford University funded by King Abdullah University of Science and Technology (KAUST).

####

For more information, please click here

Contacts:
School of Engineering
475 Via Ortega
Stanford, California 94305-4121
650.725.1575

Andrew Myers

650-736-2245

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project