Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Rice professor's nanotube theory confirmed: Air Force Research Laboratory experiment shows chirality of tube controls speed of growth

A single nanotube stretches out across a microscopic silicon pillar in the Air Force Research Laboratory experiment. (Credit: Rahul Rao/Air Force Research Laboratory)
A single nanotube stretches out across a microscopic silicon pillar in the Air Force Research Laboratory experiment.

(Credit: Rahul Rao/Air Force Research Laboratory)

Abstract:
The Air Force Research Laboratory in Dayton, Ohio, has experimentally confirmed a theory by Rice University Professor Boris Yakobson that foretold a pair of interesting properties about nanotube growth: That the chirality of a nanotube controls the speed of its growth, and that armchair nanotubes should grow the fastest.

Rice professor's nanotube theory confirmed: Air Force Research Laboratory experiment shows chirality of tube controls speed of growth

Houston, TX | Posted on January 30th, 2012

The work is a sure step toward defining all the mysteries inherent in what Yakobson calls the "DNA code of nanotubes," the parameters that determine their chirality -- or angle of growth -- and thus their electrical, optical and mechanical properties. Developing the ability to grow batches of nanotubes with specific characteristics is a critical goal of nanoscale research.

The new paper by Air Force senior researcher Benji Maruyama; former Air Force colleague Rahul Rao, now at the Honda Research Institute in Ohio; Yakobson and their co-authors appeared this week in the online version of the journal Nature Materials.

It's an interesting denouement in a saga that began with a 2009 paper by Yakobson and his collaborators. That paper, which presented the theoretical physicist's dislocation theory of chirality-controlled growth, described how nanotubes emerge as if single threads of atoms weave themselves into the now-familiar chicken-wire-like tubes. It also garnered a bit of controversy over what precisely the results meant.

"Boris caught some heat over it," Maruyama said. "The experimental work out there indicated his theory might be true, but they couldn't confirm it. The good part about our work is that it's fairly unambiguous."

Yakobson, Rice's Karl F. Hasselmann Professor of Mechanical Engineering and Materials Science and professor of chemistry, took it all in stride. "The criticism didn't affect anything; it was actually the best advertisement and motivation for further work," he said. "In fact, (nanotube pioneer Sumio) Iijima noted early that 'helicity may aid the growth.' We have transformed it into a verifiable equation."

Experimental confirmation of a theory is never final but always satisfying, he admitted, and the Air Force lab was uniquely equipped to prove the linkage between the speed of a nanotube's growth and its chiral angle.

The chirality of a single-walled nanotube is determined by the way its carbon atoms are "rolled." Yakobson has described it as similar to rolling up a newspaper; sometimes the type lines up, and sometimes it doesn't. That alignment determines the nanotubes' electrical properties. Metallic armchair nanotubes, so named for the shape of their uncapped edges, are particularly desirable because electrons pass through from tip to tip with no resistance, while semiconducting nanotubes are useful for electronics, among other applications.

Rao developed a technique in Maruyama's lab to measure the growth rates of individual nanotubes. "It's an impressive setup," Yakobson said. "They can grow individual tubes in very low density and identify their signatures - their chirality - and at the same time measure how rapidly they grow."

The technique involved mounting catalyst nanoparticles on microscopic silicon pillars and firing tightly controlled lasers at them. Heat from the laser triggered the nanotubes to grow through a standard technique called chemical vapor deposition, and at the same time, the researchers analyzed nanotube growths via Raman spectroscopy.

From the spectra, they could tell how fast a nanotube grew and at what point growth terminated. Subsequent electron microscope images confirmed the spectra were from individual single-walled nanotubes, while chiral angles were determined by comparing post-growth Raman spectra and nanotube diameters to the Kataura plot, which maps chirality based on band gap and diameter.

They noted in the paper that the results provide a basis for further research into growing specific types of nanotubes. "Now that we know what the growth rate is for a particular chirality nanotube, one could think about trying to achieve growth of that specific chirality by influencing growth conditions accordingly," Rao said. "So, basically, we now have another 'knob' to turn."



"This work is at a very early development stage, and it's all about post-nucleation," Yakobson said. "Nucleation sets what I think of as the genetic code - very primitive compared to biology - that determines the chirality and the speed of growth of a nanotube." He said it may be possible someday to dictate the form of a nanotube as it begins to bubble up from a catalyst, "but it will take a lot of ingenuity."



Yakobson revealed a formula last year that defined the nucleation probability through the edge energies for graphene, which is basically a cut-and-flattened nanotube. But the earlier and related dislocation theory applies to the following growth, and if confirmed further may turn out to be his masterwork.

"The dislocation theory of growth is elegant and simple," Rao said. "It's still too early to say that it is the only growth mechanism, but Boris should be given plenty of credit for proposing this bold idea in the first place."

Co-authors are former Rice graduate student Tonya Leeuw Cherukuri and David Liptak, both researchers at the Air Force lab.

The Air Force Office of Scientific Research and the National Research Council funded the work.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project