Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Southampton scientist searches for quantum limit using polystyrene balls

Abstract:
A physicist at the University of Southampton is using polystyrene balls of increasing size to recreate classic physic experiments to test the limits of quantum mechanics.

He describes how this works on You Tube today.

Southampton scientist searches for quantum limit using polystyrene balls

Southampton, UK | Posted on January 12th, 2012

Hendrik Ulbricht has been awarded a Foundational Questions Institute (FQXi) grant of $140,000 to carry out these experiments which could reveal where the quantum realm ends and where the classical world begins. Dr Ulbricht will look at interference patterns of the balls and recreate a polystyrene test which has all the elements of Thomas Young's two slit experiment, in which light from a single source is shone through a pair of slits and onto a screen, where an interference pattern of light and dark bands appear. In physics, interference is something that happens when two light waves come together. In quantum physics, even a single particle itself can interfere.

Over the years, single particle interference patterns have been created by firing electrons, atoms and even large molecules at the slits. Dr Ulbricht hopes to push the quantum-classical boundary a big step further by demonstrating interference using polystyrene balls that are a thousand times heavier than the largest molecules tested so far.

"Nobody has done this with polystyrene before, but it looks very promising," said Dr Ulbricht. "These experiments will help to understand the mechanism which links the quantum to the classical world in a consistent picture."

The Microstructured Optical Fibre group led by Professor David Richardson at the University of Southampton's Optoelectronics Research Centre developed the optical fibres to guide the particles through the process.

####

About University of Southampton
The University of Southampton is one of the top 10 research-led universities in the UK and has achieved consistently high scores for its teaching and learning activities. We offer first-rate opportunities and facilities for study and research, and a stimulating working environment. We work closely with business and industry, and have a strong enterprise agenda. These pages will provide an indication of the quality and breadth of the activities which take place across our campuses and throughout our academic year, in addition to enabling you to find out more specialized information.

For more information, please click here

Contacts:
Helene Murphy
+44(0)20 8531 8000


Dr Hendrik Ulbricht
School of Physics and Astronomy
University of Southampton
Tel: 023 8059 2073


Joyce Lewis
Communications Manager
Marketing Manager
ECS -Electronics and Computer Science
Optoelectronics Research Centre
Physics and Astronomy
University of Southampton
tel. 023 8059 5453

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For further information about Dr Hendrik Ulbricht, visit:

Further information about the project can be accessed at:

and:

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

Videos/Movies

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Physics

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Flexible Metamaterial Absorbers July 29th, 2014

Measuring the Smallest Magnets July 28th, 2014

Discoveries

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Quantum nanoscience

Measuring the Smallest Magnets July 28th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Bending the rules: A UCSB postdoctoral scholar in physics discovers a counterintuitive phenomenon: the coexistence of superconductivity with dissipation June 29th, 2014

Singapore Researchers Use FEI Titan S/TEM to Link Plasmonics with Molecular Electronics: As described in the March 28 issue of Science, researchers discover quantum plasmonic tunneling – a phenomenon that may eventually lead to new, ultra-fast electrical circuits June 24th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE